scholarly journals Oil Cakes: Non-Conventional, Effective and Low-Cost Adsorbents for Removal of Acid Dyes from Aqueous Solution

2016 ◽  
Vol 28 (5) ◽  
pp. 1087-1096
Author(s):  
Neha Pandey ◽  
Somi Ali ◽  
Mrudula Pulimi ◽  
Sangeetha Subramanian
2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2017 ◽  
Vol 98 ◽  
pp. 189-195 ◽  
Author(s):  
Bin Zhou ◽  
Zhanghong Wang ◽  
Dekui Shen ◽  
Fei Shen ◽  
Chunfei Wu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2682
Author(s):  
Gyuhyeon Kim ◽  
Young-Mo Kim ◽  
Su-Min Kim ◽  
Hyun-Uk Cho ◽  
Jong-Moon Park

In this study, magnetic steel slag biochar (MSSB) was synthesized from low-cost steel slag waste to investigate the effectiveness of steel slag biochar composite for NH4-N removal and magnetic properties in aqueous solution. The maximum adsorption capacity of NH4-N by MSSB was 4.366 mg/g according to the Langmuir model. The magnetic properties of MSSB indicated paramagnetic behavior and a saturation magnetic moment of 2.30 emu/g at 2 Tesla. The NH4-N adsorption process was well characterized by the pseudo-second order kinetic model and Temkin isotherm model. This study demonstrated the potential of magnetic biochar synthesized from steel slag waste for NH4-N removal in aqueous solution.


Author(s):  
Laura Wienands ◽  
Franziska Theiß ◽  
James Eills ◽  
Lorenz Rösler ◽  
Stephan Knecht ◽  
...  

AbstractParahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.


Sign in / Sign up

Export Citation Format

Share Document