scholarly journals Adsorption of Congo Red (Acid Red 28) Azodye on Biosynthesized Copper Oxide Nanoparticles

2019 ◽  
Vol 31 (3) ◽  
pp. 707-713 ◽  
Author(s):  
Madiha Batool ◽  
Muhammad Zahid Qureshi ◽  
Farwa Hashmi ◽  
Nida Mehboob ◽  
Walid M. Daoush

A green synthesis of copper oxide nanoparticles and its removal efficiency of azodye were studied. Biosynthesis of stable copper oxide nanoparticles were preformed using Aloe barbadensis leaf extract as a size and shape-directing agent for preparing of spherical copper oxide nanoparticles by calcination at 400 °C. The leaf extract of Aloe barbadensis was prepared in deionized water. The produced copper particles were calcined at 400 °C to produce copper oxide nanoparticles. The characterization of copper oxide nanoparticles was performed by XRD, SEM, FTIR, UV spectroscopy. The XRD analysis showed that the average particle size was between 5-30 nm. The shape of the copper oxide nanoparticles was spherical and cubic. EDX of the synthesized nanoparticles showed the composition consists of 68 % copper. The UV-visible spectrum analysis confirms an absorption peak at 200-400 nm of the produced CuO nanoparticles. The FTIR analysis of the copper oxide particles indicate the presence of the organometallic Cu-O bond between Cu and O. The obtained copper oxide was used as a removing agent of Congo red dye. The effect of variables like concentration, time, pH, adsorbent dosage were studied. It was observed from the results that the maximum dye removal occurs at pH of 4, the concentration of nanoparticles was 1 mg/L and the maximum time for dye removal was 120 min. The Langmuir isotherm model was calculated to study the adsorption efficiency of the Congo red dye on the produced copper oxide nanoparticles. The kinetics of pseudo second order is followed by adsorption. The calculated sum of square was 0.012 and r2 = 0.98. it was observed that the model fit the best and straight line with r2 value of 0.991 and probability value of 1.6E-5. The nanoparticles remove 70 % of the Congo red dye from its solution. This showed that the copper oxide nanoparticles has efficient capacity of azodye degradation.

2021 ◽  
Author(s):  
Kijay Bahadur Singh ◽  
Neelam Gautam ◽  
Deen Dayal Upadhyay ◽  
Gulam Abbas ◽  
Gajanan Pandey

Abstract In this work, we reported the green synthesis of Solanum nigrum extract capped copper oxide nanoparticles (SN@CuO NPs) at room temperature, avoiding harsh, toxic, and environment unfriendly chemicals. The synthesized SN@CuO NPs, were analyzed with the help of spectroscopic techniques. UV-visible spectroscopy confirmed the synthesis of SN@CuO NPs in reaction mixture while fourier transform infrared spectroscopy (FTIR) results revealed capping of phytochemicals of Solanum nigrum over the surface of CuO NPs. Morphology and elemental composition of formed SN@CuO NPs were explored with the help of FE-SEM, TEM, and EDS, respectively. Crystalline nature, surface charge and specific surface area was characterized using XRD pattern, DLS and BET analyses, respectivley. The data obtained from spectroscopic analyses specified the formation of mesoporous, positively charged and highly stabilized CuO nanoparticles due to adsorption of phytochemicals present in Solanum nigrum leaf extract on the CuO nanoparticle’s surface. SN@CuO NPs have shown promising catalytic activity towards reduction of highly carcinogenic dye Congo red making use of sodium borohydride. Negatively charged reactants like anionic Congo red molecules and BH4− ions eagerly adsorbed on positively charged, small sizes (5–6 nm), mesoporous SN@CuO NPs surface having wide surface area. It is proposed that BH4− ions interacted with SN@CuO NPs to form Cu tetrahydroborates dihydrogen bonded (DHB) tetrahedral L2Cu(ɳ2-BH4) complex, which is proved as an effective reducing agent. This complex acts as dihydrogen source for rapid reduction of azo bond. UV-visible, FTIR, 1H NMR, 13C NMR, and LC-MS studies of reaction mixture at different reaction stages have shown that the major degradation intermediates were benzidine and α-naphthol. The apparent rate constants for the products at intermediate and final degradation stages have been found to be 0.468 min− 1 and 0.0189 min− 1, respectively. A plausible degradation mechanism for Congo red reduction has also been proposed in this study.


2019 ◽  
Vol 19 (3) ◽  
pp. 626 ◽  
Author(s):  
Madiha Batool ◽  
Muhammad Zahid Qureshi ◽  
Farwa Hashmi ◽  
Nida Mehboob ◽  
Abdul Salam Shah

Nanotechnology is generating interest of researchers toward cost-free and environment-friendly biosynthesis of nanoparticles. In this research, biosynthesis of stable copper nanoparticles has been done by using aloe vera leaves extract which has been prepared in de-ionized water. The aim of this study is the tracing of an object by green synthesis of copper oxide nanoparticles with the interaction of leaves extract and copper salt and its dye removal efficiency. The results have confirmed the efficient removal of Congo red (CR) dye using copper oxide nanoparticles. Furthermore, we have examined the effect of variables like concentration, time, pH, and adsorbent dosage. We have observed maximum 1.1 mg/g dye removal at 10 min time interval, pH 2, and 5 mg/g nanoparticles. The shape of the copper nanoparticles was spherical, and their range of grain was 80–120 nm. The EDX of synthesized nanoparticles showed copper 38% and 65% oxygen. UV spectrophotometer analysis confirms peak of the copper nanoparticles between 200–600 nm.


2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2021 ◽  
pp. 111492
Author(s):  
Dang Le Tri Nguyen ◽  
Quach An Binh ◽  
Xuan Cuong Nguyen ◽  
Thi Thanh Huyen Nguyen ◽  
Quang Nha Vo ◽  
...  

2021 ◽  
pp. 1-40
Author(s):  
Taynara Basso Vidovix ◽  
Heloise Beatriz Quesada ◽  
Rosângela Bergamasco ◽  
Marcelo Fernandes Vieira ◽  
Angélica Marquetotti Salcedo Vieira

Sign in / Sign up

Export Citation Format

Share Document