scholarly journals RP-HPLC Estimation of Bumetanide and its Impurities in Oral Solid Dosage Form

2019 ◽  
Vol 31 (10) ◽  
pp. 2215-2221
Author(s):  
P. Suresh Kumar ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel and simultaneous stability indicating RP-HPLC method has been developed for quantitative analysis of bumetanide in fixed dose pharmaceutical formulations. Bumetanide and its degradation products are well separated by the Discovery C18, 250 × 4.6 mm, 5 μm column as a stationary phase and (50:50 v/v) of 0.1 % o-phthalaldehyde and acetonitrile as a mobile phase. All the compounds are monitored using photodiode array detector at 254 nm with an isocratic method and the flow rate of 1.0 mL/min was maintained. Validation of method was performed as per International Council for Harmonization (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) were evaluated. The linearity of the proposed method was found to be 0.315-1.875 μg/mL for bumetanide and its impurities. The developed method is more economical and suitable for laboratory use because of solvent consumption is very less. Hence, the developed method can be used for the determination of bumetanide and its impurities in drug product stability studies and pharmaceutical formulations.

2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


2017 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Panchumarthy Ravisankar ◽  
Shaheem Sulthana ◽  
Inturi Mary Thanuja ◽  
A. Dihitha Chowdary ◽  
J. Vyshnavi

Objective: The objective of the current study was to develop and validate a novel RP-HPLC method for determination of bamifylline hydrochloride in pharmaceutical dosage form.Methods: Chromatographic separation was conducted on Agilent technologies-1260 series with the G1311C quaternary pump, eclipse XDB C18 column (4.6 mm i.d. X 250 mm, 5 µm particle sizes) and equipped with photodiode array detector G1315D. Mobile phase consisted of methanol and acetonitrile were mixed in the ratio of 90:10 v/v, was used at a flow rate of 1 ml/min and detection wavelength was set at 263 nm.Results: The retention time for bamifylline hydrochloride was found to be 2.913 min. The calibration was linear (r2= 0.9996) in the concentration range of 2-10 µg/ml. The limit of detection and the limit of quantitation were found to be 0.4825 μg/ml and 1.4621 µg/ml respectively. Recovery of bamifylline hydrochloride in tablet formulation was observed in the range of 99.6-99.8 %. Percentage assay of bamifylline hydrochloride (Bamifix) was found to be 99.4 % w/w.Conclusion: Thus the novel proposed method for bamifylline hydrochloride was found to be feasible for the estimation of bamifylline hydrochloride in bulk as well as a pharmaceutical dosage form. 


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Subrata Bhadra ◽  
Sreedam Chandra Das ◽  
Sumon Roy ◽  
Shamsul Arefeen ◽  
Abu Shara Shamsur Rouf

A simple, precise, specific, and accurate reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for determination of vinpocetine in pure and pharmaceutical dosage forms. The different analytical performance parameters such as linearity, accuracy, specificity, precision, and sensitivity (limit of detection and limit of quantitation) were determined according to International Conference on Harmonization ICH Q2 (R1) guidelines. RP-HPLC was conducted on Zorbax C18 (150 mm length × 4.6 mm ID, 5 μm) column. The mobile phase was consisting of buffer (containing 1.54% w/v ammonium acetate solution) and acetonitrile in the ratio (40 : 60, v/v), and the flow rate was maintained at 1.0 mLmin−1. Vinpocetine was monitored using Agilent 1200 series equipped with photo diode array detector (λ = 280 nm). Linearity was observed in concentration range of 160–240 μgmL−1, and correlation coefficient was found excellent (R2 = 0.999). All the system suitability parameters were found within the range. The proposed method is rapid, cost-effective and can be used as a quality-control tool for routine quantitative analysis of vinpocetine in pure and pharmaceutical dosage forms.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Paras P. Vekariya ◽  
Hitendra S. Joshi

Simple and rapid reverse phase high-performance liquid chromatography (RP-HPLC) method was developed and validated using solid phase extraction (SPE) technique for the determination of Azilsartan Medoxomil Potassium (AMP) in human plasma; detection was carried out by photo diode array detector. Chromatographic separation of the analyte AMP was achieved within 7.5 min by Waters symmetry C18 (4.6 × 250 mm, 5 µm) column, mobile phase was 25 mM ammonium acetate buffer (pH 5.5): acetonitrile 55 : 45 v/v, flow rate was 1.0 mL/min, and the detection was carried out at 254 nm. Calibration curve was linear (r2 > 0.9985) in the range of 1.0–9.0 µg/mL, limit of detection (LOD) and limit of quantitation (LOQ) were 0.150 µg/mL and 0.400 µg/mL, respectively, and intra- and interday deviations were between 1.53–8.41% and 1.78–4.59%, respectively. The overall mean recovery of AMP was 92.35%. No any endogenous constituents were found to interfere at retention time of the analyte. This new RP-HPLC method was successfully validated and may be applied to conduct bioavailability and bioequivalence studies of AMP.


2019 ◽  
Vol 10 (4) ◽  
pp. 3717-3727
Author(s):  
Dawood CH. Al-Bahadily ◽  
Rasool Chaloob ◽  
Kulood H. Oudah ◽  
H. N. K. AL-Salman ◽  
Falah Hassan Shari ◽  
...  

In this study, a simple and reliable stability-indicating RP-HPLC method was developed and validated for the analysis of Nystatin in the pharmaceuticals. The chromatographic separation was performed in the isocratic mode on an Ion Pac column; Arcus EP‑C18; 5μm, 4.6×250 mm, 30 °C) using a mobile phase consisting of ammonium acetate 0.05 M buffer/ Methanol mixture (30:70) and a flow-rate of 1.0 mL/min with UV detection at 305 nm. The flow rate was set at 1.0 mL/min. The HPLC analysis method was validated in terms of linearity, precision, accuracy, specificity, and sensitivity, according to International Conference on Harmonization (ICH) guidelines. The results indicated that the retention time was 8 min, and no interferences were observed from the formulation excipients and stress degradation products.  The specificity, linearity, precision, accuracy, LOD, and LOQ of the method were validated. The method was linear over the range of 5–500 μg/mL with an acceptable correlation coefficient (R2 = 0.9996). The method’s limit of detection (LOD) and quantification (LOQ) were 0.01 and 0.025 μg/mL, respectively. The results indicate that this validated method can be used as an alternative method for the assay of nystatin. This validated HPLC method could be used for routine analysis, quality control, and the stability of analysis of Nystatin formulations.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (07) ◽  
pp. 39-45
Author(s):  
S.V Nagpure ◽  
◽  
S.V Deshmane ◽  
K.R. Biyani

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of fenpiverinium bromide and pitofenone HCl. Separation of the drug was achieved on a reverse phase Thermo Kromasil C18 Column. The method showed a linear response for concentration in the range of 1.2-2.8μg/ml for FVB 6-14 μg/ml for PFH using diammonium hydrogen orthophosphatee buffer pH 7.2: acetonitrile as the mobile phase in the ratio of 55:45, v/v with detection at 220 nm with a flow rate of 1 ml/min and retention time was 3.77min and 7.45 min for FVB and PFH respectively. The method was statistically validated for linearity, accuracy, precision and selectivity.The limit of detection and limit of quantitation was 0.0654 µg/ml and 0.1982 µg/ml for FVB and 0.0927 µg/ml and 0.281 µg/ml for PFH, respectively. In quantitative and recovery studies, % RSD was found less than 2. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis of fenpiverinium bromide and pitofenone HCl in pharmaceutical formulations.


Author(s):  
Parikela vani

A simple, rapid, precise, sensitive and reproducible reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for the quantitative analysis of Tenofovir Disoproxil Fumarate and Emtricitabine in pharmaceutical dosage form. Chromatographic separation of Tenofovir Disoproxil Fumarate and Emtricitabine was achieved on Waters Alliance -2695, by using Luna C18 (250mm x 4.6mm, 5µm) column and the mobile phase containing 0.1% TEA adjusted pH-2.5 with OPA & ACN in the ratio of 60:40 v/v. The flow rate was 1.0 ml/min, detection was carried out by absorption at 261 nm using a photodiode array detector at ambient temperature. The number of theoretical plates and tailing factor for Tenofovir Disoproxil Fumarate and Emtricitabine were NLT 2000 and should not more than 2 respectively. The linearity of the method was excellent over the concentration range 30-450 µg/ml and 20-300 µg/ml for Tenofovir Disoproxil Fumarate and Emtricitabine respectively. The correlation coefficient was 0.999. % Relative standard deviation of peak areas of all measurements always less than 2.0. The proposed method was validated according to ICH guidelines. The method was found to be simple, economical, suitable, precise, accurate & robust method for quantitative analysis of Tenofovir Disoproxil Fumarate and Emtricitabine study of its stability.


Author(s):  
Kanchipogu usha rani ◽  
P. Venkateswara Rao ◽  
N. Srinivasa Rao

A simple, rapid, precise, sensitive and reproducible reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for the quantitative analysis of Dolutegravir and Rilpivirine in pharmaceutical dosage form. Chromatographic separation of Dolutegravir and Rilpivirine was achieved on Waters Alliance -2695, by using Luna C18 (250mm x 4.6mm, 5µm) column and the mobile phase containing 0.1% OPA & ACN in the ratio of 50:50 v/v. The flow rate was 1.0 ml/min, detection was carried out by absorption at 245 nm using a photodiode array detector at ambient temperature. The number of theoretical plates and tailing factor for Dolutegravir and Rilpivirine were NLT 2000 and should not more than 2 respectively. The linearity of the method was excellent over the concentration range 10-150 µg/ml and 5-75 µg/ml for Dolutegravir and Rilpivirine respectively. The correlation coefficient was 0.999. % Relative standard deviation of peak areas of all measurements always less than 2.0. The proposed method was validated according to ICH guidelines. The method was found to be simple, economical, suitable, precise, accurate & robust method for quantitative analysis of Dolutegravir and Rilpivirine study of its stability.


Author(s):  
P. Sushma ◽  
A. K. M. Pawar ◽  
M. Divya

Objective: The main objective of the present work is to develop an efficient, unique, reliable Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method for the simultaneous quantification of Amoxicillin (AMX), Clarithromycin (CTM) and Lansoprazole (LPZ) in bulk and pharmaceutical formulations.  Methods: The chromatographic separation was achieved by using Kinetex column C18 (100 x 4.6 mm, 2.6 µm) with Buffer (2.5 g of hexane sulphonic acid and 1ml of Triethylamine which are added to 1000 ml of HPLC water and adjusted its pH at 5.0 with Ortho phosphoric acid) and acetonitrile in the ratio of 70: 30 (%v/v) as a mobile phase at flow rate of 1.0 ml/min. The column effluents were monitored by a photodiode array detector at wavelength predetermined at 240 nm. Results: The method produced reliable results at optimized chromatographic conditions. The method was linear at concentration range of 15-225 µg/ml of AMX, 15-225 µg/ml of CTM and 0.9-13.5 µg/ml of LPZ with regression coefficients of 0.9999, 0.9999, and 0.9999 respectively. The retention times of AMX, CTM, LPZ were obtained as 1.513, 3.124, 3.770 min respectively. Results obtained for system suitability, precision, LOD and LOQ were in acceptable range and were validated according to the guidelines of the International Council for Harmonization (ICH). Conclusion: The proposed method was validated in accordance with ICH and all the obtained results were found satisfactory and were successfully applicable to the analysis of the bulk and the pharmaceutical formulations.


2010 ◽  
Vol 7 (s1) ◽  
pp. S261-S266 ◽  
Author(s):  
D. Suneetha ◽  
A. Lakshmana Rao

A new, simple, specific, sensitive, rapid, accurate and precise RP-HPLC method was developed for the estimation of quetiapine in bulk and pharmaceutical formulations. Quetiapine was chromatographed on a reverse phase C18Waters column (75x4.6 mm I.D., particle size 3.5 μm) in a mobile phase consisting of phosphate buffer (pH 3.0 adjusted with orthophosphoric acid) and acetonitrile in the ratio 40:60 v/v. The mobile phase was pumped at a flow rate of 0.8 mL/min with detection at 291 nm. The detector response was linear in the concentration of 20-120 μg/mL. The limit of detection and limit of quantitation was found to be 0.2 and 0.75 μg/mL, respectively. The intra and inter day variation was found to be less than 1%. The mean recovery of the drug from the solution was 99%. The proposed method is simple, fast, accurate, precise and reproducible hence, it can be applied for routine quality control analysis of quetiapine in bulk and pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document