scholarly journals Fasten, simple, and specific stability of the avant-garde RP-HPLC method for estimation and validation of nystatin in pharmaceutical formulations

2019 ◽  
Vol 10 (4) ◽  
pp. 3717-3727
Author(s):  
Dawood CH. Al-Bahadily ◽  
Rasool Chaloob ◽  
Kulood H. Oudah ◽  
H. N. K. AL-Salman ◽  
Falah Hassan Shari ◽  
...  

In this study, a simple and reliable stability-indicating RP-HPLC method was developed and validated for the analysis of Nystatin in the pharmaceuticals. The chromatographic separation was performed in the isocratic mode on an Ion Pac column; Arcus EP‑C18; 5μm, 4.6×250 mm, 30 °C) using a mobile phase consisting of ammonium acetate 0.05 M buffer/ Methanol mixture (30:70) and a flow-rate of 1.0 mL/min with UV detection at 305 nm. The flow rate was set at 1.0 mL/min. The HPLC analysis method was validated in terms of linearity, precision, accuracy, specificity, and sensitivity, according to International Conference on Harmonization (ICH) guidelines. The results indicated that the retention time was 8 min, and no interferences were observed from the formulation excipients and stress degradation products.  The specificity, linearity, precision, accuracy, LOD, and LOQ of the method were validated. The method was linear over the range of 5–500 μg/mL with an acceptable correlation coefficient (R2 = 0.9996). The method’s limit of detection (LOD) and quantification (LOQ) were 0.01 and 0.025 μg/mL, respectively. The results indicate that this validated method can be used as an alternative method for the assay of nystatin. This validated HPLC method could be used for routine analysis, quality control, and the stability of analysis of Nystatin formulations.

2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


2019 ◽  
Vol 31 (10) ◽  
pp. 2215-2221
Author(s):  
P. Suresh Kumar ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel and simultaneous stability indicating RP-HPLC method has been developed for quantitative analysis of bumetanide in fixed dose pharmaceutical formulations. Bumetanide and its degradation products are well separated by the Discovery C18, 250 × 4.6 mm, 5 μm column as a stationary phase and (50:50 v/v) of 0.1 % o-phthalaldehyde and acetonitrile as a mobile phase. All the compounds are monitored using photodiode array detector at 254 nm with an isocratic method and the flow rate of 1.0 mL/min was maintained. Validation of method was performed as per International Council for Harmonization (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) were evaluated. The linearity of the proposed method was found to be 0.315-1.875 μg/mL for bumetanide and its impurities. The developed method is more economical and suitable for laboratory use because of solvent consumption is very less. Hence, the developed method can be used for the determination of bumetanide and its impurities in drug product stability studies and pharmaceutical formulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thummala V. Raghava Raju ◽  
Noru Anil Kumar ◽  
Seshadri Raja Kumar ◽  
Annarapu Malleswara Reddy ◽  
Nittala Someswara Rao ◽  
...  

A sensitive, stability-indicating gradient RP-HPLC method has been developed for the simultaneous estimation of impurities of Guaifenesin and Dextromethorphan in pharmaceutical formulations. Efficient chromatographic separation was achieved on a Sunfire C18, 250 × 4.6 mm, 5 µm column with mobile phase containing a gradient mixture of solvents A and B. The flow rate of the mobile phase was 0.8 mL min−1 with column temperature of 50°C and detection wavelength at 224 nm. Regression analysis showed an r value (correlation coefficient) greater than 0.999 for Guaifenesin, Dextromethorphan, and their impurities. Guaifenesin and Dextromethorphan formulation sample was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Guaifenesin was found stable and Dextromethorphan was found to degrade significantly in peroxide stress condition. The degradation products were well resolved from Guaifenesin, Dextromethorphan, and their impurities. The peak purity test results confirmed that the Guaifenesin and Dextromethorphan peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to ICH guidelines with respect to specificity, linearity, limits of detection and quantification, accuracy, precision, and robustness.


2018 ◽  
Vol 17 (1) ◽  
pp. 43-50
Author(s):  
Sherejad Sanam ◽  
Sharmin Nahar ◽  
Nazmus Saqueeb ◽  
SM Abdur Rahman

A stability indicating HPLC method was developed and validated for the quantitative determination of fexofenadine hydrochloride. An isocratic separation was achieved using phenomenex (C18) column (250×4.6 mm, 5 μm) with flow rate of 1.0 ml/min and UV detection at 254 nm. The mobile phase consists of 5Mm acetate buffer: acetonitrile (50:50; v/v) with pH 9.4 adjusted with acetic acid. The drug was subjected to oxidative, acidic, basic, neutral, photolytic and thermal degradation. All degradation products were eluted in an overall analytical run time of approximately 40 min with the parent compound fexofenadine hydrochloride at a flow rate of approximately 3.3±0.3 min. The method was linear over the concentration range of 31.5-500 μg/ml (r2 = 0.999) with limit of detection and quantification of 3.5 μg/ml and 10.1 μg/ml, respectively. The method has the requisite accuracy, selective, precision and robustness to assay fexofenadine HCl in tablets.Dhaka Univ. J. Pharm. Sci. 17(1): 43-50, 2018 (June)


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramakrishna Kommana ◽  
Praveen Basappa

The present paper describes the development of quick stability indicating RP-HPLC method for the simultaneous estimation of codeine phosphate and chlorpheniramine maleate in the presence of its degradation products, generated from forced degradation studies. The developed method separates codeine phosphate and chlorpheniramine maleate in impurities/degradation products. Codeine phosphate and chlorpheniramine maleate and their combination drug product were exposed to acid, base, oxidation, dry heat, and photolytic stress conditions, and the stressed samples were analysed by proposed method. The proposed HPLC method utilizes the Shimadzu HPLC system on a Phenomenex C18 column (, 5 μ) using a mixture of 1% o-phosphoric acid in water : acetonitrile : methanol (78 : 10 : 12) mobile phase with pH adjusted to 3.0 in an isocratic elution mode at a flow rate of 1 mL/min, at 23°C with a load of 20 μL. The detection was carried out at 254 nm. The retention time of codeine phosphate and chlorpheniramine maleate was found to be around 3.47 min and 9.45 min, respectively. The method has been validated with respect to linearity, robustness, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ). The developed validated stability indicating HPLC method was found to be simple, accurate, and reproducible for the determination of instability of these drugs in bulk and commercial products.


2020 ◽  
Vol 11 (1) ◽  
pp. 781-789
Author(s):  
Sriram Valavala ◽  
Nareshvarma Seelam ◽  
Subbaiah Tondepu ◽  
Suresh Kandagatla

The present study aims to develop a simple, accurate and specific stability-indicating RP-HPLC technique for the analysis of metoclopramide in the presence of its stress degradation products and characterization of degradation compounds by LC-MS/MS analysis. As per ICH Q1A-R2 guidelines, the drug was exposed to acid hydrolytic stress condition. Three degradation products were formed for MCP in acid hydrolysis. The liquid chromatography was processed on a Luna C18-(2) 100A,250×4.6mm 5micron column using an isocratic mobile phase consisting of 0.1% formic acid in water-acetonitrile (20:80, v/v) by adjusting the mobile phase at 1 ml/min flow rate with wavelength detection at 273 nm. The developed procedure was applied to LC-MS/MS (liquid chromatography-tandem mass spectrometry) for the characterization of all the degradant components. Total new three degradation compounds were recognized and identified by LC-MS/MS. The developed RP-HPLC technique was validated as per the ICH Q2-R1 guidelines. Limit of detection and limit of quantification values of MCP were evaluated from the linearity graph and were found to be 5.23 µg/ml and 17.44 µg/ml. Accuracy study was established at 80.0, 100.0 and 120.0 µg/ml concentration levels and the findings were found in the range of 98.4% - 101.8%. The linearity of the technique was assessed over the drug concentration range of 50.0 µg/ml to 250.0 µg/ml and the regression equation, slope and correlation coefficient values were found to be y = 10618x + 1623.2, 10618 and 0.9996 respectively. The developed technique was uninterruptedly applied for the quantification of metoclopramide inactive pharmaceuticals.


2020 ◽  
Vol 10 (1) ◽  
pp. 31-38
Author(s):  
Rahul Suryawanshi ◽  
Siddiqua Shaikh ◽  
Snehal Patil

A new, simple, precise, accurate and reproducible Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method for Simultaneous estimation of bulk and pharmaceutical formulations. Separation of Mirabegron was successfully achieve , C18, 250X4.6mm, 5µm or equivalent in an isocratic mode utilizing methanol water (70:30) at pH 5.0 Adjusted to OPA at a flow rate of 1.0ml/min and eluate was monitored at 243nm, with a retention time of 2.584 minutes for Mirabegron. The method was validated and the response was found to be linear in the drug concentration range of 50µg/ml to150 µg/ml for Mirabegron. The values of the correlation coefficient were found to 0.999for Mirabegron. The Limit of Detection(LOD) and Limit of Quantification (LOQ) for Mirabegron were found to be 0.149 and 0.498 respectively. This method was found to be good percentage recovery were found to be 99 indicates that the proposed method is highly accurate. The specificity of the method shows good correlation between retention times of standard with the sample so, the method specifically determines the analyte in the sample without interference from excipients of tablet dosage forms. The method was extensively validated according to International Council for Harmonisation(ICH) guidelines for Linearity, Accuracy, Precision, Specificity and


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (07) ◽  
pp. 39-45
Author(s):  
S.V Nagpure ◽  
◽  
S.V Deshmane ◽  
K.R. Biyani

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of fenpiverinium bromide and pitofenone HCl. Separation of the drug was achieved on a reverse phase Thermo Kromasil C18 Column. The method showed a linear response for concentration in the range of 1.2-2.8μg/ml for FVB 6-14 μg/ml for PFH using diammonium hydrogen orthophosphatee buffer pH 7.2: acetonitrile as the mobile phase in the ratio of 55:45, v/v with detection at 220 nm with a flow rate of 1 ml/min and retention time was 3.77min and 7.45 min for FVB and PFH respectively. The method was statistically validated for linearity, accuracy, precision and selectivity.The limit of detection and limit of quantitation was 0.0654 µg/ml and 0.1982 µg/ml for FVB and 0.0927 µg/ml and 0.281 µg/ml for PFH, respectively. In quantitative and recovery studies, % RSD was found less than 2. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis of fenpiverinium bromide and pitofenone HCl in pharmaceutical formulations.


Author(s):  
Charu P. Pandya ◽  
Sadhana J. Rajput

Objective: The objective of present work was to develop and validate simple, precise, accurate and specific stability indicating method for determination of acotiamide in presence of its degradation products.Methods: An isocratic RP-HPLC method has been developed using C-8 Thermo Hypersil BDS Column (250 x 4.6 mm i.d., 5µparticle size) with the mobile phase composition of acetonitrile: 0.1 % triethylamine in 0.2% formic acid (30: 70) at column oven temperature of 40 °C. The flow rate was 1.0 ml min-1 and effluent was detected at 282 nm. The method was validated in terms of linearity, accuracy, precision, LOD (Limit of Detection), LOQ (Limit of Quantification) and robustness as per ICH guidelines.Results: The method was found to be linear in the range of 10-60µg/ml. Limit of detection and limit of quantification was found to 0.36µg/ml and 1.10 µg/ml.% Recovery was found to be in the range of 99.45%-99.75%and precision less than 2%. The developed method was successfully applied for estimation of Acotiamide in marketed tablet formulation and percentage assay was found to be 100.45%. Acotiamide was subjected to stress degradation under acid, base, neutral hydrolysis, oxidation, dry heat, photolysis conditions. Significant degradation was observed in acid and base degradation.Conclusion: The developed RP-HPLC method was simple, rapid, accurate, precise and stability indicating for the estimation of Acotiamide in bulk and tablet dosage form.


Sign in / Sign up

Export Citation Format

Share Document