VALIDATION OF PROPOSED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF FENPIVERINIUM BROMIDE AND PITOFENONE HCL

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (07) ◽  
pp. 39-45
Author(s):  
S.V Nagpure ◽  
◽  
S.V Deshmane ◽  
K.R. Biyani

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of fenpiverinium bromide and pitofenone HCl. Separation of the drug was achieved on a reverse phase Thermo Kromasil C18 Column. The method showed a linear response for concentration in the range of 1.2-2.8μg/ml for FVB 6-14 μg/ml for PFH using diammonium hydrogen orthophosphatee buffer pH 7.2: acetonitrile as the mobile phase in the ratio of 55:45, v/v with detection at 220 nm with a flow rate of 1 ml/min and retention time was 3.77min and 7.45 min for FVB and PFH respectively. The method was statistically validated for linearity, accuracy, precision and selectivity.The limit of detection and limit of quantitation was 0.0654 µg/ml and 0.1982 µg/ml for FVB and 0.0927 µg/ml and 0.281 µg/ml for PFH, respectively. In quantitative and recovery studies, % RSD was found less than 2. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis of fenpiverinium bromide and pitofenone HCl in pharmaceutical formulations.

2010 ◽  
Vol 7 (s1) ◽  
pp. S261-S266 ◽  
Author(s):  
D. Suneetha ◽  
A. Lakshmana Rao

A new, simple, specific, sensitive, rapid, accurate and precise RP-HPLC method was developed for the estimation of quetiapine in bulk and pharmaceutical formulations. Quetiapine was chromatographed on a reverse phase C18Waters column (75x4.6 mm I.D., particle size 3.5 μm) in a mobile phase consisting of phosphate buffer (pH 3.0 adjusted with orthophosphoric acid) and acetonitrile in the ratio 40:60 v/v. The mobile phase was pumped at a flow rate of 0.8 mL/min with detection at 291 nm. The detector response was linear in the concentration of 20-120 μg/mL. The limit of detection and limit of quantitation was found to be 0.2 and 0.75 μg/mL, respectively. The intra and inter day variation was found to be less than 1%. The mean recovery of the drug from the solution was 99%. The proposed method is simple, fast, accurate, precise and reproducible hence, it can be applied for routine quality control analysis of quetiapine in bulk and pharmaceutical formulations.


2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


2010 ◽  
Vol 7 (1) ◽  
pp. 246-252 ◽  
Author(s):  
S. K. Patro ◽  
S. K. Kanungo ◽  
V. J. Patro ◽  
N. S. K. Choudhury

A simple, rapid and accurate and stability indicating RP-HPLC method was developed for the determination of valsartan in pure and tablet forms. The method showed a linear response for concentrations in the range of 50-175 µg/mL using 0.01 M NH4H2PO4(pH 3.5) buffer: methanol [50:50] as the mobile phase with detection at 210 nm and a flow rate of 1 mL/min and retention time 11.041 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, forced degradation, solution stability and selectivity. Quantitative and recovery studies of the dosage form were also carried out and analyzed; the % RSD from recovery studies was found to be less than 1. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (02) ◽  
pp. 20-33
Author(s):  
N. S Kumar ◽  
◽  
R Kumaraswamy ◽  
S. Shantikumar ◽  
D. Paul

The present study describes the separation and simultaneous estimation of eight anti-retroviral drugs, namely, Telaprevir (TPV), Emtricitabine (ECB), Fosamprenavir (FANV), Tenofavir (TNF), Ritonavir (RNV), Raltegravir (RGV) and Oseltamivir (OSMV) and Zidovudine (ZDV) as an active pharmaceutical ingredient, by RP-HPLC method by applying the principles of Quality by Design (QbD). An application of DoE (Design of Experiments) full factorial design was used for initial screening and optimization. The final optimized method consists of separation being carried out on a Fortis C18 column (150 mm × 4.6 mm, 5μ particle size) using acetonitrile and 10 mm ammonium formate buffer (pH 3 adjusted with formic acid) using a gradient program. The quantitative evaluation was performed with a diode array detector at 251 nm and 230 nm with a flow rate of 1 mL min–1. Suitability of this method for the quantitative determination of the drugs was proved by validation in accordance with the International Conference on Harmonization (ICH) guidelines. The method is selective, precise, robust and accurate and can be used for routine analysis of pharmaceutical formulations in quality control and counterfeit screening.


Author(s):  
Sushil D. Patil ◽  
Pravin B. Shelke ◽  
Priti Aher ◽  
Maswood Ahmed Hafizur Rahman

A simple, rapid, economic, sensitive and precise HPLC method has been developed for the simultaneous determination of Sulphadoxine and Pyrimethamine in pharmaceutical dosage form by taking Tolterodine as an internal standard. The method was carried out using Phenomenex C18 (4.6ID × 250mm; 5µm) column and mobile phase comprised of methanol and Phosphate Buffer in proportion of ratio 60:40 v/v. The flow rate was 1.0mL/min and detection was carried out at 276nm. The retention time of Sulphadoxine, Pyrimethamine and Tolterodine were found to be 2.967, 4.058 and 6.908 respectively. Linearity of Sulphadoxine and Pyrimethamine in the range of 2 to 12μg/mL and 4 to 24μg/mL respectively. The % recoveries of Sulphadoxine and Pyrimethamine were found to be in between 99.93% to 99. 96 % respectively. The proposed method is suitable for the routine quality control analysis for simultaneous determination of Sulphadoxine and Pyrimethamine was in bulk and pharmaceutical dosage form.


2017 ◽  
Vol 9 (6) ◽  
pp. 34
Author(s):  
Madhavi K. ◽  
Navamani M. ◽  
Prasanthi C.

Objective: To develop a simple, rapid, economic, accurate and precise reverse phase-high performance liquid chromatographic (RP-HPLC) method for the determination of hydrochlorothiazide and candesartan in the pharmaceutical dosage form and to validate as per international conference on harmonization (ICH) guidelines.Methods: The chromatographic separation was performed on Silanol BDS C18 column (250 x 4.6 mm, 5 μm), a mobile phase consisting of water (pH adjusted to 2.8 with orthophosphoric acid): acetonitrile (30:70 % v/v), with a flow rate 1 ml/min and the detection wavelength of 210 nm using photodiode array (PDA) detector.Results: The developed method resulted in elution of hydrochlorothiazide at 2.28 min and candesartan at 4.28 min. The calibration curves were linear (r2=0.999) in the concentration range of 6.25-18.75 μg/ml and 8-24 μg/ml for hydrochlorothiazide and candesartan respectively. The percentage recoveries were found to be 99.78-100.39 for hydrochlorothiazide and 99.87-100.64 for candesartan. The limit of detection (LOD) was found to be 0.410 μg/ml and 0.699 μg/ml for hydrochlorothiazide and candesartan respectively. The limit of quantitation (LOQ) was found to be 1.367 μg/ml and 2.330 μg/ml for hydrochlorothiazide and candesartan respectively.Conclusion: A simple, economic, accurate, precise, linear and rapid RP-HPLC method was developed for simultaneous quantitative estimation of hydrochlorothiazide and candesartan in bulk and pharmaceutical formulation and the method was validated as per ICH guidelines. Hence, the method holds good for the routine analysis of hydrochlorothiazide and candesartan in various pharmaceutical industries as well as in academics.


2019 ◽  
Vol 31 (10) ◽  
pp. 2215-2221
Author(s):  
P. Suresh Kumar ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel and simultaneous stability indicating RP-HPLC method has been developed for quantitative analysis of bumetanide in fixed dose pharmaceutical formulations. Bumetanide and its degradation products are well separated by the Discovery C18, 250 × 4.6 mm, 5 μm column as a stationary phase and (50:50 v/v) of 0.1 % o-phthalaldehyde and acetonitrile as a mobile phase. All the compounds are monitored using photodiode array detector at 254 nm with an isocratic method and the flow rate of 1.0 mL/min was maintained. Validation of method was performed as per International Council for Harmonization (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) were evaluated. The linearity of the proposed method was found to be 0.315-1.875 μg/mL for bumetanide and its impurities. The developed method is more economical and suitable for laboratory use because of solvent consumption is very less. Hence, the developed method can be used for the determination of bumetanide and its impurities in drug product stability studies and pharmaceutical formulations.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 265-274
Author(s):  
Bindusar Kalia ◽  
Uttam Singh Baghel

This article refers to simple isocratic reverse-phase high-performance liquid chromatographic method (RP-HPLC) developed for the simultaneous quantification of Escitalopram Oxalate (EST) and Clonazepam (CZP) in active pharmaceutical ingredient and pharmaceuticals. The separation of the two drugs was attained using a C₁₈ column (250mm×4.6mm, 5µ) as a stationary phase. The mobile phase was used as a mixture of methanol; acetonitrile; and 0.05M potassium dihydrogen orthophosphate buffer (pH 4 adjusted by orthophosphoric acid) with an isocratic ratio of 40:20:40 v/v. Detection was made by using PDA detector at 210 nm. Escitalopram Oxalate (RT= 4.428 minutes) and Clonazepam (RT= 6.532 minutes) were separated in a single chromatographic run with resolution of 8.719. The calibration plot indicated good linear relationship with r2 = 0.998 for Escitalopram Oxalate in concentration range of 32 µg/ml - 48 µg/ml and r2 = 0.999 for Clonazepam in concentration range of 16 µg/ml - 24 µg/ml. The retrievals for Escitalopram Oxalate and Clonazepam were found to be 99.75% and 99.00%, respectively. The established analytical method was validated and found acceptable as per ICH guidelines for linearity, precision, accuracy, specificity, limit of detection, limit of quantification, robustness and stability. Escitalopram Oxalate and Clonazepam individually as well as in combination were exposed to different stress conditions like acid, base, thermal, photolytic and oxidation degradation and peaks of a degraded product were well determined from peaks of pure drug. This method is modest, quick and appropriate for routine quality control analysis. Keywords: Reverse Phase – HPLC; Escitalopram Oxalate; Clonazepam; Validation; Degradation study.


2020 ◽  
Vol 10 (1) ◽  
pp. 31-38
Author(s):  
Rahul Suryawanshi ◽  
Siddiqua Shaikh ◽  
Snehal Patil

A new, simple, precise, accurate and reproducible Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method for Simultaneous estimation of bulk and pharmaceutical formulations. Separation of Mirabegron was successfully achieve , C18, 250X4.6mm, 5µm or equivalent in an isocratic mode utilizing methanol water (70:30) at pH 5.0 Adjusted to OPA at a flow rate of 1.0ml/min and eluate was monitored at 243nm, with a retention time of 2.584 minutes for Mirabegron. The method was validated and the response was found to be linear in the drug concentration range of 50µg/ml to150 µg/ml for Mirabegron. The values of the correlation coefficient were found to 0.999for Mirabegron. The Limit of Detection(LOD) and Limit of Quantification (LOQ) for Mirabegron were found to be 0.149 and 0.498 respectively. This method was found to be good percentage recovery were found to be 99 indicates that the proposed method is highly accurate. The specificity of the method shows good correlation between retention times of standard with the sample so, the method specifically determines the analyte in the sample without interference from excipients of tablet dosage forms. The method was extensively validated according to International Council for Harmonisation(ICH) guidelines for Linearity, Accuracy, Precision, Specificity and


2011 ◽  
Vol 8 (3) ◽  
pp. 1238-1245 ◽  
Author(s):  
G. Tulja Rani ◽  
D. Gowri Sankar ◽  
P. Kadgapathi ◽  
B. Satyanarayana

A simple, fast, precise, selective and accurate RP-HPLC method was developed and validated for the simultaneous determination of atenolol and indapamide from bulk and formulations. Chromatographic separation was achieved isocratically on a Waters C18 column (250×4.6 mm, 5 µ particle size) using a mobile phase, methanol and water (adjusted to pH 2.7 with 1% orthophosphoric acid) in the ratio of 80:20. The flow rate was 1 mL/min and effluent was detected at 230 nm. The retention time of atenolol and indapamide were 1.766 min and 3.407 min. respectively. Linearity was observed in the concentration range of 12.5-150 µg/mL for atenolol and 0.625-7.5 µg/mL for indapamide. Percent recoveries obtained for both the drugs were 99.74-100.06% and 98.65-99.98% respectively. The method was validated according to the ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness. The method developed can be used for the routine analysis of atenolol and indapamide from their combined dosage form.


Sign in / Sign up

Export Citation Format

Share Document