scholarly journals Synthesis and Spectral Characterization of Mn(II) and Co(II) Complexes with Tetradentate Macrocyclic Ligand

2021 ◽  
Vol 33 (9) ◽  
pp. 2207-2211
Author(s):  
Usha Bansal ◽  
Samta Goyal ◽  
Swati Agrawal

Manganese(II) and cobalt(II) complexes were synthesized with [N4] tetradentate macrocyclic ligand using different metal salts i.e. MnCl2, Mn(NO3)2, CoCl2 and Co(NCS)2. The ligand was prepared by condensation of glyoxal and carbahydrazide. All these were characterized by elemental analysis, molar conductance measurements, magnetic moment, IR, mass, electronic and EPR spectral studies. Elemental analysis indicates that the complexes have composition MLX2 where (X = Cl–, NO3 –,NCS–). All the complexes were found to be non-electrolytic in nature so can be formulated as [MLX2]. Infrared spectra of metal complexes suggest that the ligand behaves as tetradentate. On the basis of magnetic moment, electronic and EPR spectral data, all the metal complexes were found to be high spin with octahedral geometry.

2020 ◽  
Vol 13 (3) ◽  
pp. 265-273
Author(s):  
Bekele Yirga ◽  
Achalu Chimdi ◽  
P.Thillai Arasu

In this study, Complexes of Co (II) and Ni (II) ions with Ruhmann’s purple (ligand) were successfully synthesized and characterized. The complexes of NiL2and CoL2were synthesized by using template condensation synthesis method and characterized by melting point, solubility, elemental analysis, and molar conductance, and magnetic susceptibility, infrared and electronic spectral studies. The complexes, NiL2and CoL2 are soluble in ethanol, partially soluble in Diethyl ether and chloroform and insoluble in hexane and petroleum ether. The complexes, NiL2and CoL2 neither melt nor decompose up to 4200C. The molar conductance of NiL2and CoL2 was 42 Scm2/mol and 46Scm2/mol in respectively. The molar magnetic susceptibility of two complexes was 1.74 BM for NiL2 and 2.76 BM for CoL2. The metal to ligand ratio of both metal complexes was 1:2; both metal complexes are non-electrolytes in ethanol and are paramagnetic at 210C. Based on the spectral data and other analytical data, monobasic ONO donor behavior of the ligand (Ruhmann’s purple) generates octahedral geometry for the pink-green colored Ni (II) complex and green colored Co (II) complex.


2019 ◽  
Vol 31 (8) ◽  
pp. 1774-1778
Author(s):  
Monika Tyagi ◽  
Sulekh Chandra

Complexes of chlorides and acetates of Mn(II) and Co(II) with ligand, 3-[mercapto-[1,3,4]thiadiazol-2-ylimino)-methyl]-benzene-1,2-diol has been synthesized and characterized. The metal complexes so formed were characterized by molar conductance, elemental analysis, mass, EPR, IR and electronic spectral studies. Geometry of the ligand and its metal complexes was optimized by (B3LYP) functional with 6-31G (d,p) basis sets method of the Gaussian 09 W. All the metal complexes were found to be non-electrolytes. Metal complexes are represented as [M(L)2X2] [where L = Schiffs base ligand, M = Mn(II), Co(II) and X = Cl–, CH3COO–]. Octahedral geometry for Mn(II) and Co(II) complexes was determined by means of spectral studies and molecular modelling. Ligand and its metal complexes were screened against three bacteria- P. aeruginosa, S. pyogens and B. subtilis using well diffusion method. Complexes are found to be more potent as compare to the ligand.


2009 ◽  
Vol 74 (12) ◽  
pp. 1413-1422 ◽  
Author(s):  
Sulekh Chandra ◽  
Archana Gautam

Complexes of Cr(III), Mn(II) and Co(II) with a novel 5,7,12,14-tetraphenyl- 1,2,4,8,10,11-hexaazacyclotetradecane-3,9-dione macrocyclic ligand, THTD (L), were synthesized and characterized by elemental analysis, molar conductance and magnetic susceptibility measurements, as well as by mass, 1H-NMR, IR, electronic and EPR spectral studies. Based on the spectral studies, an octahedral geometry was assigned for the Cr(III), Mn(II) and Co(II) complexes. The ligand and its complexes were screened in vitro against some species of bacteria and plant pathogenic fungi. The metal complexes were found to be more active antimicrobial agents than the free ligand from which they were derived.


2021 ◽  
Vol 33 (6) ◽  
pp. 1222-1228
Author(s):  
R. Selvarani ◽  
S. Balasubramaniyan ◽  
K. Rajasekar ◽  
M. Thairiyaraja ◽  
R. Meenakshi

A new bidentate Schiff base (E)-N′[(E)-3-phenylallylidene]benzene-1,2-diamine derived from the condensation of o-phenylenediamine and cinnamaldehyde and its Mn(II) and Hg(II) complexes were synthesized and characterized by elemental analysis, molar conductance, magnetic moment, electronic spectra, IR, far-IR and NMR (1H & 13C) spectral studies. The elemental analysis and these metal proposed the metal:ligand stoichiometry and molecular formulae of the metal complexes. The molar conductance and electrochemical property indicates monomeric, neutral nature and redox properties of the metal complexes. The UV-visible spectral study supports the octahedral geometry for Mn(II) complex and square planar geometry for Hg(II) complex and further confirmed by magnetic moment. IR spectral data examined the coordination mode but far-IR is useful to identify the metal-ligand vibrations. The geometry, magnetic property and unsymmetrical nature of these metal complexes corroborated by NMR (1H & 13C) spectra. The DFT of Mn(II) complex studied and the structure optimized by B3LYP/Lan L2DZ using Gaussian 09W. Quantum chemical calculations were done by Mullikan population analysis, HOMO-LUMO and molecular electrostatic potential. The in vitro biological screening effects of the investigated complexes were tested against some bacteria and fungus by agar-well diffusion method. The results indicated that Mn(II) and Hg(II) complexes exhibit potentially active than the Schiff base which was further confirmed by pharmacokinetics study. The antioxidant activity of Schiff base and its Mn(II) complex was examined by radical scavenging DPPH method.


2015 ◽  
Vol 12 (3) ◽  
pp. 503-515 ◽  
Author(s):  
Baghdad Science Journal

The preparation and characterization of the Cu (II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) metal complexes of heterocyclic azo ligand 2-[(4`-sulphamide phenyl) azo] -4,5-diphenyl imidazole (4-SuBAI) have been studied by elemental analysis, FT-IR and UV-Vis Spectroscopic, magnetic moment and molar conductance methods. The analytical data showed that all chelate complexes were prepared with (metal-ligand) ratio of (1:2). The general formula of these complexes was [ML2X2]. nH2O [were L=2-[(4`-sulphamide phenyl) azo]-4,5-diphenyl imidazole and X=Cl, and the octahedral geometry were suggested for these complexes .


1997 ◽  
Vol 4 (2) ◽  
pp. 65-68 ◽  
Author(s):  
Zahid H. Chohan ◽  
Syed K. A. Sherazi

Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and C13 spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported.


2016 ◽  
Vol 2 (4) ◽  
pp. 177
Author(s):  
Raj Kamal Rastogi ◽  
Sonu Sharma ◽  
Gulshan Rastogi ◽  
Alok K. Singh

The complexes of Benzil-2, 4-dinitrophenyl hydrazone-p- bromo aniline with Ti(III),V(III), VO(IV),MoO (V), Fe(II), Fe(III) have synthesized and characterized by elemental analysis, magnetic measurement data, molar conductance, TGA,UV-visible and IR spectra data. The complexes of Ti (III), V (III), Fe (II) and Fe (III) have octahedral geometry while VO (IV) and MoO(V) have distorted octahedral geometry due to the presence of M=O moiety.


2011 ◽  
Vol 76 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Janardhanan Athira ◽  
Yesodharan Sindhu ◽  
Susamma Sujamol ◽  
Kochukittan Mohanan

3-[3-Carboxyethyl-4,5-dimethylthiophene-2-yl)azo]pent-2,4-dione was synthesized by coupling diazotized 2-amino-3-carboxyethyl- 4,5-dimethylthiophene with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen bonded azoenol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III) complexes viz, lanthanum(III), cerium(III), praseodymium(III), neodymium(III), samarium(III) and gadolinium(III), which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III) complexes were subjected to X-ray diffraction studies. In addition, the lanthanum(III) complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behavior of the lanthanum(III) complex was also examined.


1979 ◽  
Vol 57 (4) ◽  
pp. 394-399 ◽  
Author(s):  
P. P. Singh ◽  
S. P. Yadav

Binuclear mixed-metal mixed-ligand monomeric bridged complexes of the type (XCN)2(L)2M(NCX)2Hg(PPh3)2 (M = Co(II), Ni(II), Cu(II), Zn(II); L = pyridine, nicotinamide; PPh3 = triphenylphosphine; X = S, Se) have been synthesized and characterized by elemental analysis, molar conductance, magnetic moment, and infrared and electronic spectral studies. In all the complexes, the most likely structure involves pyridine or nicotinamide linked to M and PPh3 to Hg. Total softness calculations have also been made to extend support to the structure of the complexes.


2014 ◽  
Vol 79 (4) ◽  
pp. 421-433 ◽  
Author(s):  
Abhay Srivastava ◽  
Netra Singh ◽  
Chandra Shriwastaw

A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino)-propylideneamino-acetic acid) (LaH) derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II), Ni(II), Co(II) and Zn(II) metals in 1:1 (metal : ligand) molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II) complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi) and fungi (Candida albicans and Candida parapsilosis) to assess their antibacterial and antifungal properties.


Sign in / Sign up

Export Citation Format

Share Document