scholarly journals Summary of climate change impacts on tree species distribution, phenology, forest structure and composition for each of the 85 studies reviewed

UQ eSpace ◽  
2017 ◽  
Author(s):  
Jiban Deb ◽  
Stuart Phinn ◽  
Nathalie Butt ◽  
Clive McAlpine
PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195851 ◽  
Author(s):  
Carlos E. Manchego ◽  
Patrick Hildebrandt ◽  
Jorge Cueva ◽  
Carlos Iván Espinosa ◽  
Bernd Stimm ◽  
...  

2019 ◽  
Vol 19 (8) ◽  
pp. 2711-2728
Author(s):  
Hamid Taleshi ◽  
Seyed Gholamali Jalali ◽  
Seyed Jalil Alavi ◽  
Seyed Mohsen Hosseini ◽  
Babak Naimi ◽  
...  

2020 ◽  
Author(s):  
Flurin Babst ◽  
Richard L. Peters ◽  
Rafel O. Wüest ◽  
Margaret E.K. Evans ◽  
Ulf Büntgen ◽  
...  

<p>Warming alters the variability and trajectories of tree growth around the world by intensifying or alleviating energy and water limitation. This insight from regional to global-scale research emphasizes the susceptibility of forest ecosystems and resources to climate change. However, globally-derived trends are not necessarily meaningful for local nature conservation or management considerations, if they lack specific information on present or prospective tree species. This is particularly the case towards the edge of their distribution, where shifts in growth trajectories may be imminent or already occurring.</p><p>Importantly, the geographic and bioclimatic space (or “niche”) occupied by a tree species is not only constrained by climate, but often reflects biotic pressure such as competition for resources with other species. This aspect is underrepresented in many species distribution models that define the niche as a climatic envelope, which is then allowed to shift in response to changes in ambient conditions. Hence, distinguishing climatic from competitive niche boundaries becomes a central challenge to identifying areas where tree species are most susceptible to climate change.</p><p>Here we employ a novel concept to characterize each position within a species’ bioclimatic niche based on two criteria: a climate sensitivity index (CSI) and a habitat suitability index (HSI). The CSI is derived from step-wise multiple linear regression models that explain variability in annual radial tree growth as a function of monthly climate anomalies. The HSI is based on an ensemble of five species distribution models calculated from a combination of observed species occurrences and twenty-five bioclimatic variables. We calculated these two indices for 11 major tree species across the Northern Hemisphere.</p><p>The combination of climate sensitivity and habitat suitability indicated hotspots of change, where tree growth is mainly limited by competition (low HSI and low CSI), as well as areas that are particularly sensitive to climate variability (low HSI and high CSI). In the former, we expect that forest management geared towards adjusting the competitive balance between several candidate species will be most effective under changing environmental conditions. In the latter areas, selecting particularly drought-tolerant accessions of a given species may reduce forest susceptibility to the predicted warming and drying.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianjun Yu ◽  
Pam Berry ◽  
Benoit P. Guillod ◽  
Thomas Hickler

Forests provide important ecosystem services but are being affected by climate change, not only changes in temperature and precipitation but potentially also directly through the plant-physiological effects of increases in atmospheric CO2. We applied a tree-species-based dynamic model (LPJ-GUESS) at a high 5-km spatial resolution to project climate and CO2 impacts on tree species and thus forests in Great Britain. Climatic inputs consisted of a novel large climate scenario ensemble derived from a regional climate model (RCM) under an RCP 8.5 emission scenario. The climate change impacts were assessed using leaf area index (LAI) and net primary productivity (NPP) for the 2030s and the 2080s compared to baseline (1975–2004). The potential CO2 effects, which are highly uncertain, were examined using a constant CO2 level scenario for comparison. Also, a climate vulnerability index was developed to assess the potential drought impact on modeled tree species. In spite of substantial future reductions in rainfall, the mean projected LAI and NPP generally showed an increase over Britain, with a larger increment in Scotland, northwest England, and west Wales. The CO2 increase led to higher projected LAI and NPP, especially in northern Britain, but with little effect on overall geographical patterns. However, without accounting for plant-physiological effects of elevated CO2, NPP in Southern and Central Britain and easternmost parts of Wales showed a decrease relative to 2011, implying less ecosystem service provisioning, e.g., in terms of timber yields and carbon storage. The projected change of LAI and NPP varied from 5 to 100% of the mean change, due to the uncertainty arising from natural weather-induced variability, with Southeast England being most sensitive to this. It was also the most susceptible to climate change and drought, with reduced suitability for broad-leaved trees such as beech, small-leaved lime, and hornbeam. These could lead to important changes in woodland composition across Great Britain.


2008 ◽  
Vol 4 (5) ◽  
pp. 573-576 ◽  
Author(s):  
Xavier Morin ◽  
Martin J Lechowicz

Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity.


Sign in / Sign up

Export Citation Format

Share Document