scholarly journals Climate Change Impacts on the Future of Forests in Great Britain

2021 ◽  
Vol 9 ◽  
Author(s):  
Jianjun Yu ◽  
Pam Berry ◽  
Benoit P. Guillod ◽  
Thomas Hickler

Forests provide important ecosystem services but are being affected by climate change, not only changes in temperature and precipitation but potentially also directly through the plant-physiological effects of increases in atmospheric CO2. We applied a tree-species-based dynamic model (LPJ-GUESS) at a high 5-km spatial resolution to project climate and CO2 impacts on tree species and thus forests in Great Britain. Climatic inputs consisted of a novel large climate scenario ensemble derived from a regional climate model (RCM) under an RCP 8.5 emission scenario. The climate change impacts were assessed using leaf area index (LAI) and net primary productivity (NPP) for the 2030s and the 2080s compared to baseline (1975–2004). The potential CO2 effects, which are highly uncertain, were examined using a constant CO2 level scenario for comparison. Also, a climate vulnerability index was developed to assess the potential drought impact on modeled tree species. In spite of substantial future reductions in rainfall, the mean projected LAI and NPP generally showed an increase over Britain, with a larger increment in Scotland, northwest England, and west Wales. The CO2 increase led to higher projected LAI and NPP, especially in northern Britain, but with little effect on overall geographical patterns. However, without accounting for plant-physiological effects of elevated CO2, NPP in Southern and Central Britain and easternmost parts of Wales showed a decrease relative to 2011, implying less ecosystem service provisioning, e.g., in terms of timber yields and carbon storage. The projected change of LAI and NPP varied from 5 to 100% of the mean change, due to the uncertainty arising from natural weather-induced variability, with Southeast England being most sensitive to this. It was also the most susceptible to climate change and drought, with reduced suitability for broad-leaved trees such as beech, small-leaved lime, and hornbeam. These could lead to important changes in woodland composition across Great Britain.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 302 ◽  
Author(s):  
Louis Iverson ◽  
Matthew Peters ◽  
Anantha Prasad ◽  
Stephen Matthews

Forests across the globe are faced with a rapidly changing climate and an enhanced understanding of how these changing conditions may impact these vital resources is needed. Our approach is to use DISTRIB-II, an updated version of the Random Forest DISTRIB model, to model 125 tree species individually from the eastern United States to quantify potential current and future habitat responses under two Representative Concentration Pathways (RCP 8.5 -high emissions which is our current trajectory and RCP 4.5 -lower emissions by implementing energy conservation) and three climate models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. On average, of the 125 species, approximately 88 species would gain and 26 species would lose at least 10% of their suitable habitat. The projected change in the center of gravity for each species distribution (i.e., mean center) between current and future habitat moves generally northeast, with 81 species habitat centers potentially moving over 100 km under RCP 8.5. Collectively, our results suggest that many species will experience less pressure in tracking their suitable habitats under a path of lower greenhouse gas emissions.



2021 ◽  
Author(s):  
Simon Ricard ◽  
Philippe Lucas-Picher ◽  
François Anctil

Abstract. Statistical post-processing of climate model outputs is a common hydroclimatic modelling practice aiming to produce climate scenarios that better fit in-situ observations and to produce reliable stream flows forcing calibrated hydrologic models. Such practice is however criticized for disrupting the physical consistency between simulated climate variables and affecting the trends in climate change signals imbedded within raw climate simulations. It also requires abundant good-quality meteorological observations, which are not available for many regions in the world. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations, nor for statistical post-processing of climate model outputs, nor for calibrating hydrologic models. By combining asynchronous hydroclimatic modelling, an alternative framework designed to construct hydrologic scenarios without resorting to meteorological observations, and quantile perturbation applied to streamflow observations, the proposed workflow produces sound and plausible hydrologic scenarios considering: (1) they preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascades despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four subcatchments of the Chaudière River, Canada, using 9 North American CORDEX simulations and a pool of lumped conceptual hydrologic models. Forced with raw climate model outputs, hydrologic models are calibrated over the reference period according to a calibration metric designed to function with temporally uncorrelated observed and simulated streamflow values. Perturbation factors are defined by relating each simulated streamflow quantiles over both reference and future periods. Hydrologic scenarios are finally produced by applying perturbation factors to available streamflow observations.



2020 ◽  
Vol 20 (8) ◽  
pp. 2133-2155
Author(s):  
Aynalem T. Tsegaw ◽  
Marie Pontoppidan ◽  
Erle Kristvik ◽  
Knut Alfredsen ◽  
Tone M. Muthanna

Abstract. Climate change is one of the greatest threats currently facing the world's environment. In Norway, a change in climate will strongly affect the pattern, frequency, and magnitudes of stream flows. However, it is challenging to quantify to what extent the change will affect the flow patterns and floods from small rural catchments due to the unavailability or inadequacy of hydro-meteorological data for the calibration of hydrological models and due to the tailoring of methods to a small-scale level. To provide meaningful climate impact studies at the level of small catchments, it is therefore beneficial to use high-spatial- and high-temporal-resolution climate projections as input to a high-resolution hydrological model. In this study, we used such a model chain to assess the impacts of climate change on the flow patterns and frequency of floods in small ungauged rural catchments in western Norway. We used a new high-resolution regional climate projection, with improved performance regarding the precipitation distribution, and a regionalized hydrological model (distance distribution dynamics) between a reference period (1981–2011) and a future period (2070–2100). The flow-duration curves for all study catchments show more wet periods in the future than during the reference period. The results also show that in the future period, the mean annual flow increases by 16 % to 33 %. The mean annual maximum floods increase by 29 % to 38 %, and floods of 2- to 200-year return periods increase by 16 % to 43 %. The results are based on the RCP8.5 scenario from a single climate model simulation tailored to the Bergen region in western Norway, and the results should be interpreted in this context. The results should therefore be seen in consideration of other scenarios for the region to address the uncertainty. Nevertheless, the study increases our knowledge and understanding of the hydrological impacts of climate change on small catchments in the Bergen area in the western part of Norway.



2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>





2019 ◽  
Vol 19 (8) ◽  
pp. 2711-2728
Author(s):  
Hamid Taleshi ◽  
Seyed Gholamali Jalali ◽  
Seyed Jalil Alavi ◽  
Seyed Mohsen Hosseini ◽  
Babak Naimi ◽  
...  


2020 ◽  
Vol 163 (3) ◽  
pp. 1267-1285 ◽  
Author(s):  
Jens Kiesel ◽  
Philipp Stanzel ◽  
Harald Kling ◽  
Nicola Fohrer ◽  
Sonja C. Jähnig ◽  
...  

AbstractThe assessment of climate change and its impact relies on the ensemble of models available and/or sub-selected. However, an assessment of the validity of simulated climate change impacts is not straightforward because historical data is commonly used for bias-adjustment, to select ensemble members or to define a baseline against which impacts are compared—and, naturally, there are no observations to evaluate future projections. We hypothesize that historical streamflow observations contain valuable information to investigate practices for the selection of model ensembles. The Danube River at Vienna is used as a case study, with EURO-CORDEX climate simulations driving the COSERO hydrological model. For each selection method, we compare observed to simulated streamflow shift from the reference period (1960–1989) to the evaluation period (1990–2014). Comparison against no selection shows that an informed selection of ensemble members improves the quantification of climate change impacts. However, the selection method matters, with model selection based on hindcasted climate or streamflow alone is misleading, while methods that maintain the diversity and information content of the full ensemble are favorable. Prior to carrying out climate impact assessments, we propose splitting the long-term historical data and using it to test climate model performance, sub-selection methods, and their agreement in reproducing the indicator of interest, which further provide the expectable benchmark of near- and far-future impact assessments. This test is well-suited to be applied in multi-basin experiments to obtain better understanding of uncertainty propagation and more universal recommendations regarding uncertainty reduction in hydrological impact studies.



2019 ◽  
Vol 156 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Gabriel Rondeau-Genesse ◽  
Marco Braun

Abstract The pace of climate change can have a direct impact on the efforts required to adapt. For short timescales, however, this pace can be masked by internal variability (IV). Over a few decades, this can cause climate change effects to exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, cause slowdowns or even hiatuses. This phenomenon is difficult to explore using ensembles such as CMIP5, which are composed of multiple climate models and thus combine both IV and inter-model differences. This study instead uses CanESM2-LE and CESM-LE, two state-of-the-art large ensembles (LE) that comprise multiple realizations from a single climate model and a single GHG emission scenario, to quantify the relationship between IV and climate change over the next decades in Canada and the USA. The mean annual temperature and the 3-day maximum and minimum temperatures are assessed. Results indicate that under the RCP8.5, temperatures within most of the individual large ensemble members will increase in a roughly linear manner between 2021 and 2060. However, members of the large ensembles in which a slowdown of warming is found during the 2021–2040 period are two to five times more likely to experience a period of very fast warming in the following decades. The opposite scenario, where the changes expected by 2050 would occur early because of IV, remains fairly uncommon for the mean annual temperature, but occurs in 5 to 15% of the large ensemble members for the temperature extremes.



Sign in / Sign up

Export Citation Format

Share Document