scholarly journals Techniques for breaking seed dormancy of rainforest species from genus Acronychia

2020 ◽  
Vol 48 (2) ◽  
pp. 159-165
Author(s):  
Ganesha S. Liyanage ◽  
Catherine A. Offord ◽  
Karen D. Sommerville

We tested for dormancy in three species of Acronychia (Rutaceae) occurring in the rainforest in eastern Australia, A. imperforata, A. laevis and A. oblongifolia, by incubating fresh intact seeds on 0.8% water agar for one month at 25/10°C. Four different techniques were then tested for their effect on dormancy: (i) incubation of intact seeds on agar incorporating gibberellic acid (GA3); (ii) seed coat removal (decoating); (iii) scarification near the radicle emergence point (scarification-emergence point); and (iv) scarification opposite the radicle emergence point (scarification-back). Imbibition tests were performed to determine whether dormancy was due to an impermeable seed coat. Germination differed among treatments, but all three species showed a similar pattern. Intact seeds showed < 6% germination after one month indicating the presence of dormancy. Highest germination (> 65%) was observed following scarification-emergence point treatment. Seed coat removal also resulted in increased germination (40-47%), in comparison with intact seeds, but GA3 and scarification-back treatments did not (< 12%). Though the seedcoats of all species were permeable, increased germination responses to decoating and scarification-emergence point treatments suggest scarification is required to clear the radicle emergence point. This may be a useful dormancy-breaking technique for Acronychia spp. and may be suitable for related Rutaceae species.

Author(s):  
S. C. Yusuf ◽  
N. N. Zakawa ◽  
T. D. Tizhe ◽  
D. Timon ◽  
J. J. Obot ◽  
...  

The purpose of this research was to determine the appropriate methods of breaking seed dormancy, level of water uptake, and the influence of gibberellic acid on the early growth of Tamarindus indica seedlings. The scarification methods used included: concentrated sulphuric acid (H2SO4), manual scarification, flaming, hot and cold water treatments. The experiments were conducted in the laboratory on Petri dishes and in potting media. GA3 was used to optimize the production of seedlings by spraying the solution on the foliage. The treatment for 10 minutes with concentrated H2SO4 gave the maximum germination percentage and water uptake (80.41%). GA3 enhances the growth of the seedlings by increasing the height, the number of leaves and stem girth at eight weeks after sowing. In conclusion, all the scarification treatments applied to the seeds of T. indica proved effective. The ten minutes treatment with concentrated H2SO4 was the best treatment for breaking seed dormancy of T. indica. And gibberellic acid enhanced early and fast seedling growth as it increase height, number of leaves and stem girth of T. indica.


2013 ◽  
Vol 850-851 ◽  
pp. 1295-1302
Author(s):  
Li Li Qian ◽  
Shan Wang ◽  
Kai Ye ◽  
Cheng Fang

Zoysia (Zoysia japonica Steud.) is a warm-season turf grass, which possess seed coat-imposed dormancy that hampers germination. The objective of the present study was to determine the most effective methods in breaking the seed dormancy of zoysia. This experiment was used to find the right concentration and treatment time. KOH, NaOH, C3H6O, and H2SO4solutions are the four kinds of chemical agents used which were evaluated and sixty four treatments were conducted. The results indicated that all chemical agents investigated can successfully remove glumes and promote seed germination of zoysia under certain concentrations and treatment times. The best method for seed dormancy breaking in zoysia was 20% KOH solution for 30 min.


2017 ◽  
Vol 23 (1) ◽  
pp. 72 ◽  
Author(s):  
Thalita Neves Marostega ◽  
Petterson Baptista Da Luz ◽  
Armando Reis Tavares ◽  
Leonarda Grillo Neves ◽  
Severino De Paiva Sobrinho

The Passiflora L. genus covers a diversity of wild species with ornamental potential, especially due to the intrinsic beauty of its exotic flowers, flowering more than once a year and the lush foliage. However, Passiflora seeds present dormancy complicating seed germination and the establishment of commercial plant production with species with high ornamental potential. This study was conducted to determine the best pre-germination treatments to overcome seed dormancy for Passiflora quadrangularis, P. nitida, P. foetida, P. eichleriana, P. alata, P. cincinnata, P. mucronata, P. micropetala, P. suberosa, P. morifolia and P. tenuifila. The experimental design was completely randomized, with five treatments and four replicates, with 25 seeds per plot. Pre-germination treatments were: seeds soaked in 1,000 mg L- 1 GA3 (gibberellic acid) for 6 hours, seeds soaked in 0.2 % KNO3 (potassium nitrate) for 24 hours, seeds soaked in 1 % KNO3 for 24 hours, partial seedcoat scarification with sandpaper number 120 and control (seeds untreated). Percentage of germination, germination velocity index and radicle length were evaluated for all species. The results showed that GA3 was effective to overcome seed dormancy in P. suberosa (86%), P. morifolia (68 %) and P. tenuifila (54%). KNO3 1% had significant effect on overcoming dormancy in seeds of P. eichleriana (66%) and scarification with sandpaper increased seed germination of P. micropetala (38%).


2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


1998 ◽  
Vol 76 (4) ◽  
pp. 575-586 ◽  
Author(s):  
Hua Chen ◽  
M A Maun

Growth chamber studies were conducted to examine seed dormancy and germination requirements of Pitcher's thistle (Cirsium pitcheri (Torr. ex Eaton) Torr. & Gray), a threatened species endemic to the shoreline sand dunes of the Great Lakes. We determined the effects of different environmental regimes on breaking seed dormancy of this monocarpic perennial. The data showed that seeds of C. pitcheri possessed innate dormancy that was caused by a hard seed coat as well as inhibitory compounds within the seed. Seed germination requirements were very specific. Exposure of seeds to different temperatures and photoperiods in a growth chamber had little effect on breaking seed dormancy unless the seeds had been pretreated. Pretreatment of seeds by cold stratification and its duration, scarification by sand paper or sulphuric acid, and application of gibberellic acid were also not very effective for breaking dormancy of C. pitcheri. High germination was obtained only when seeds were pretreated either by surgically removing the seed coat or by nicking the seed on the radicle or cotyledonary end. After this pretreatment seeds germinated over a temperature range of 15-30°C, but the highest proportion of seeds germinated when temperatures were above 20°C. Under natural conditions, germination of C. pitcheri seeds occurs in spring after they have overwintered and experienced the pretreatment of stratification and scarification through freezing and thawing of the substrate. Aqueous extract of C. pitcheri seeds had a strong inhibitory effect on germination of Oenothera biennis L. seeds indicating an allelopathic chemical in the seed. There was no relationship between the seed size of C. pitcheri and the germinability of seeds.Key words: Cirsium pitcheri, threatened species, seed dormancy, seed germination, scarification, stratification, nicking of seeds.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 450F-451
Author(s):  
Dianne Oakley ◽  
Julie Laufmann ◽  
James Klett ◽  
Harrison Hughes

Propagation of Winecups [Callirhoe involucrata (Torrey & A. Gray)] for use as a landscape ornamental has been impeded by a lack of understanding of the seed dormancy and a practical method for overcoming it. As with many members of the Malvaceae family, C. involucrata produces hard seed. In the populations tested, it accounted for 90% of an average sample. Impermeability, however, is not the only limiting factor to germination. Three disparate populations of seed, representing two different collection years have been investigated using moist pre-chilling, boiling water, leaching, gibberellic acid, hydrogen peroxide and mechanical and chemical scarification methods. Scarifying in concentrated sulfuric acid stimulates germination of some seed fractions and causes embryonic damage in others, suggesting variation in seed coat thickness. Similar results were obtained using a pressurized air-scarifier; the hard seed coat of some seed fractions were precisely scarified while others were physically damaged using the same psi/time treatment. Placing seed in boiling water increases germination from 4%, 7%, and 18 % to 23%, 25%, and 77% in the three populations, respectively. Leaching for 24/48 h in cold (18 °C) aerated water or for 24 h in warm (40 °C) aerated water showed only a minor increase over the control. Pre-chilling at 5 °C for 30, 60, and 90 days showed no improvement over the control. Gibberellic acid-soaked blotters improved germination at 400 ppm to 20%, 10%, and 41%; at 500 ppm germination was reduced. Soaking seed for 24 h in a 3% concentration of hydrogen peroxide did not effect germination; at a 30% concentration germination was reduced. The considerable variation in seed dormancy expression may be a function of differences in environmental factors during development or seed age.


2020 ◽  
Author(s):  
Qing Jin ◽  
Jinfeng Tong ◽  
Wenwu Zhang ◽  
Long Xia ◽  
Xiaoyun Zhu ◽  
...  

Abstract Background: The seeds of Polygonatum cyrtonema Hua have dormancy phenomenon. Previous studies have shown that sand storage factors effects of the seed dormancy of P. cyrtonema Hua seeds and enhance the seed germination process. Subsequently, metabolic activities and different changes during the sand storage and germination process of P. cyrtonema Hua seed has not been heavily researched.Results: In this study the changes in the metabolites of P. cyrtonema Hua seeds at different sand storage times and germination stages, we used untargeted metabolomics to determine them. Most of the sugar and glycoside contents in seed coat increased after 30 d on the other hand, in peeled seeds increased at 30 d and decreased at 60 d after sand storage treatment. The content of proline and benzoic acid decreased in the seed coat after sand storage. PCA, OPLS-DA and HCA showed that the contents of most metabolites increased after 7 d and decreased after 14 d of seed germination. The process of 7 d to 14 d was the key stage of seed germination of P. cyrtonema Hua. Differential metabolic pathway analysis showed that seed germination was controlled by multiple metabolic pathways. Metabolic correlation revealed the interdependence between seed germination metabolites and metabolic pathways. Conclusion: Sand storage can significantly increase the rate of seed germination and play a vital role in seed dormancy of P. cyrtonema Hua. There was inherent differences in metabolites during different storage time and germination stages in P. cyrtonema Hua. Our work provides a first glimpse of the metabolome in seed germination of P. cyrtonema Hua, and provides a valuable informations for revealing the mechanism of breaking seed dormancy.


2004 ◽  
Vol 52 (4) ◽  
pp. 559
Author(s):  
Sally M. Allan ◽  
Steve W. Adkins ◽  
Christine A. Preston ◽  
Sean M. Bellairs

Hibbertia commutata Steudel, H. amplexicaulis Steudel, Chamaescilla corymbosa (R.Br.) F.Muell. Ex Benth. and Leucopogon nutans E.Pritzel are four Australian species that are difficult to germinate during mine-site rehabilitation. Laboratory germination trails were conducted to identify dormancy mechanisms and to improve germination response. Treatments applied to all species included scarification and scarification followed by soaking seeds in smoke water (1, 5 or 10%) or gibberellic acid solution (50, 200 or 1000 μM). Additional treatments with kinetin solution (50, 200 or 1000 μM) and smoke water (50 or 100%) were applied to scarified or unscarified seeds of C. corymbosa. Thermal-shock treatment was applied to L. nutans fruit, some of which were subsequently scarified and subjected to both smoke water (10%) and gibberellic-acid solution (1000 μM). Significant germination increases were obtained by using dormancy-breaking treatments on H. commutata (12.8 to 76.0%), H. amplexicaulis (6.8 to 55.1%) and C. corymbosa (48.5 to 86.4%). Scarification alone increased germination of both Hibbertia species, suggesting that these species display a physical seed coat-imposed dormancy mechanism. Germination of H. amplexicaulis was further increased by the application of gibberellic-acid solution, indicating a possible embryo-imposed dormancy mechanism. Scarification followed by the application of smoke water produced the highest germination response for C. corymbosa seeds. Scarification alone did not significantly increase germination, inferring the existence of a smoke-responsive embryo dormancy mechanism. Seeds of L.�nutans, although viable, failed to germinate and are thought to display complex seed coat- and embryo-imposed dormancy mechanisms.


Sign in / Sign up

Export Citation Format

Share Document