Heterotopic Pancreatic Epithelium in the Colon

2011 ◽  
Vol 106 ◽  
pp. S318-S319
Author(s):  
Florence Aslinia ◽  
Wenle Wang ◽  
Omid Entezari ◽  
Robert Knodell
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bo Ren ◽  
Jinshou Yang ◽  
Chengcheng Wang ◽  
Gang Yang ◽  
Huanyu Wang ◽  
...  

Abstract Background Pancreatic cancer’s poor prognosis is caused by distal metastasis, which is associated with epigenetic changes. However, the role of the 3D epigenome in pancreatic cancer biology, especially its metastasis, remains unclear. Methods Here, we developed high-resolution 3D epigenomic maps of cells derived from normal pancreatic epithelium, primary and metastatic pancreatic cancer by in situ Hi-C, ChIP-seq, ATAC-seq, and RNA-seq to identify key genes involved in pancreatic cancer metastasis Results We found that A/B compartments, contact domains, and chromatin loops changed significantly in metastatic pancreatic cancer cells, which are associated with epigenetic state alterations. Moreover, we found that upregulated genes, which were located in switched compartments, changed contact domains, and metastasis-specific enhancer-promoter loops, were related to cancer metastasis and poor prognosis of patients with pancreatic cancer. We also found that transcription factors in specific enhancer-promoter loop formation were also associated with metastasis. Finally we demonstrated that LIPC, looped to metastasis-specific enhancers, could promote pancreatic cancer metastasis. Conclusions These results highlight the multiscale 3D epigenome reprogramming during pancreatic cancer metastasis and expand our knowledge of mechanisms of gene regulation during pancreatic cancer metastasis.


Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 787-794 ◽  
Author(s):  
C.V. Wright ◽  
P. Schnegelsberg ◽  
E.M. De Robertis

We report the isolation of a new homeobox gene from Xenopus laevis genomic DNA. The homeodomain sequence is highly diverged from the prototype Antennapedia sequence, and contains a unique histidine residue in the helix that binds to DNA. The homeodomain is followed by a 65 amino acid carboxyterminal domain, the longest found to date in any vertebrate homeobox gene. We have raised specific antibodies against an XlHbox 8-beta-gal fusion protein to determine the spatial and temporal expression of this gene. The nuclear protein first appears in a narrow band of the endoderm at stage 33 and develops into expression within the epithelial cells of the pancreatic anlagen and duodenum. Expression within the pancreatic epithelium persists into the adult frog. This unprecedented restriction to an anteroposterior band of the endoderm suggests that vertebrate homeobox genes might be involved in specifying positional information not only in the neuroectoderm and mesoderm, but also in the endoderm. Our data suggest that XlHbox 8 may therefore represent the first member of a new class of position-dependent transcription factors affecting endodermal differentiation.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 439-447 ◽  
Author(s):  
G.K. Gittes ◽  
P.E. Galante ◽  
D. Hanahan ◽  
W.J. Rutter ◽  
H.T. Debase

Pancreatic organogenesis has been a classic example of epitheliomesenchymal interactions. The nature of this interaction, and the way in which endocrine, acinar and ductal cell lineages are generated from the embryonic foregut has not been determined. It has generally been thought that mesenchyme is necessary for all aspects of pancreatic development. In addition islets have been thought to derive, at least in part, from ducts. We microdissected 11-day embryonic mouse pancreas and developed several culture systems for assays of differentiation: (i) on transparent filters; (ii) suspended in a collagen I gel; (iii) suspended in a basement membrane rich gel; (iv) under the renal capsule of an adult mouse. Epithelia were grown either with or without mesenchyme, and then assayed histologically and immunohistochemically. Epithelium with its mesenchyme (growth systems i-iv) always grew into fully differentiated pancreas (acinar, endocrine, adn ductal elements). In the basement membrane-rich gel, epithelium without mesenchyme formed ductal structures. Under the renal capsule of the adult mouse the epithelium without mesenchyme exclusively formed clusters of mature islets. These latter results represent the first demonstration of pure islets grown from early pancreatic precursor cells. In addition, these islets seemed not to have originated from ducts. We propose that the default path for growth of embryonic pancreatic epithelium is to form islets. In the presence of basement membrane constituents, however, the pancreatic analage epithelium appears to be programmed to form ducts. Mesenchyme seems not to be required for all aspects of pancreatic development, but rather only for the formation of acinar structures. In addition, the islets seem to form from early embryonic epithelium (which only express non-acinar genes). This formation occurs without any specific embryonic signals, and without any clear duct or acinus formation.


1964 ◽  
Vol 20 (3) ◽  
pp. 399-413 ◽  
Author(s):  
Frances Kallman ◽  
Clifford Grobstein

Fine structural observations have been made in the 11-day embryonic mouse of exocrine cells in pancreatic epithelium developing in tissue culture transfilter from salivary gland mesenchyme of the 13-day embryonic mouse. After 2 days in culture, the exocrine cells show increased cytoplasmic density, abundant ribosomes in aggregate or "rosette" form, and expanded profiles of rough-surfaced endoplasmic reticulum. After 3 and 4 days in culture, the cells exhibit continued expansion of the profiles of endoplasmic reticulum, increased amounts of Golgi membranes, and large areas of light density (prozymogen granules). After 5 days in culture, dense zymogen granules are present in the most highly differentiated cells. In addition, at the filter-epithelial surface, at 2 days, small fibers can be discerned which, after 4 days in culture, show obvious periodicity and are thought to be collagen. The significance of these changes, in relation to the mesenchymal effect, to the onset of specific synthesis and to the stabilization of differentiation is discussed.


2019 ◽  
Author(s):  
Constanze M. Hammerle ◽  
Ionel Sandovici ◽  
Gemma V. Brierley ◽  
Nicola M. Smith ◽  
Warren E. Zimmer ◽  
...  

AbstractThe genetic mechanisms that determine the size of the adult pancreas are poorly understood. Here we demonstrate that many imprinted genes are highly expressed in the pancreatic mesenchyme, and explore the role of Igf2 in-vivo. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy. Surprisingly, mesenchymal mass is unaffected, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Furthermore, increased IGF2 activity specifically in the mesenchyme, through Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Ex-vivo exposure of primary acinar cells to exogenous IGF2 increases cell proliferation and amylase production through AKT signalling. We propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.


2020 ◽  
Vol 6 (1) ◽  
pp. 205511692091816
Author(s):  
Selvi Jegatheeson ◽  
Julien RS Dandrieux ◽  
Claire M Cannon

Case summary A 15-year-old male neutered domestic longhair cat was referred for investigation of a pancreatic nodule. Fine-needle aspiration of the nodule was performed on two occasions, 2 weeks apart, and cytology revealed pyogranulomatous inflammation and moderately dysplastic exocrine pancreatic epithelium, suspicious for neoplasia. Thoracic radiographs were unremarkable and a partial pancreatectomy was performed. On histopathology, the nodule was diagnosed as a moderately differentiated pancreatic adenocarcinoma. Two weeks after surgery, a firm subcutaneous nodule was detected on the left ventrolateral abdomen. Cytology of the nodule was suggestive of pancreatic carcinoma and needle tract seeding was suspected. With palliative treatment, the cat lived a further 136 days. Relevance and novel information To our knowledge, this represents the first report of suspected transabdominal needle tract seeding of pancreatic carcinoma following fine-needle aspiration in veterinary medicine. Veterinarians should consider this when discussing risks of pancreatic fine-needle aspiration with owners and should attempt to minimise the number of needle aspirations where possible.


Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 5109-5117 ◽  
Author(s):  
Anil Bhushan ◽  
Nobuyuki Itoh ◽  
Shigeaki Kato ◽  
Jean P. Thiery ◽  
Paul Czernichow ◽  
...  

The importance of mesenchymal-epithelial interactions for the proper development of the pancreas has been acknowledged since the early 1960s, even though the molecule(s) mediating this process have remained unknown. We demonstrate here that Fgf10, a member of the fibroblast growth factor family (FGFs), plays an essential role in this process. We show that Fgf10 is expressed in the mesenchyme directly adjacent to the early dorsal and ventral pancreatic epithelial buds. In Fgf10–/– mouse embryos, the evagination of the epithelium and the initial formation of the dorsal and ventral buds appear normal. However, the subsequent growth, differentiation and branching morphogenesis of the pancreatic epithelium are arrested; this is primarily due to a dramatic reduction in the proliferation of the epithelial progenitor cells marked by the production of the homeobox protein PDX1. Furthermore, FGF10 restores the population of PDX1-positive cells in organ cultures derived from Fgf10–/– embryos. These results indicate that Fgf10 signalling is required for the normal development of the pancreas and should prove useful in devising methods to expand pancreatic progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document