scholarly journals S3438 Modulation of the Intestinal Tight Junction Reduces Lung Fibrosis in an Animal Model for Idiopathic Pulmonary Fibrosis: The Role of Intestinal Microbiome Gut-Lung Axis in Idiopathic Pulmonary Fibrosis

2021 ◽  
Vol 116 (1) ◽  
pp. S1416-S1416
Author(s):  
Patrick H. Griffin ◽  
Sireesh Appajosyula ◽  
Matthew Bryant ◽  
Nir Barak
2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Doni ◽  
Alberto Mantovani ◽  
Barbara Bottazzi ◽  
Remo Castro Russo

PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient’s life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.


2020 ◽  
Vol 21 (7) ◽  
pp. 2269 ◽  
Author(s):  
Tanyalak Parimon ◽  
Changfu Yao ◽  
Barry R Stripp ◽  
Paul W Noble ◽  
Peter Chen

: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Barkha ◽  
M Gegg ◽  
H Lickert ◽  
M Königshoff

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
S Skwarna ◽  
I Henneke ◽  
W Seeger ◽  
T Geiser ◽  
A Günther ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panpan Liu ◽  
Lei Zhao ◽  
Yuxia Gu ◽  
Meilan Zhang ◽  
Hongchang Gao ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung diseases with a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to be involved in IPF in several studies. However, the role of lncRNA SNHG16 in IPF is largely unknown. Methods Firstly, experimental pulmonary fibrosis model was established by using bleomycin (BML). Histology and Western blotting assays were used to determine the different stages of fibrosis and expression of several fibrosis biomarkers. The expression of SNHG16 was detected by quantitative real-time polymerase chain reaction (qRT‐PCR). EdU staining and wound-healing assay were utilized to analyze proliferation and migration of lung fibroblast cells. Molecular mechanism of SNHG16 was explored by bioinformatics, dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and qRT-PCR. Results The expression of SNHG16 was significantly up-regulated in bleomycin-(BLM) induced lung fibrosis and transforming growth factor-β (TGF-β)-induced fibroblast. Knockdown of SNHG16 could attenuate fibrogenesis. Mechanistically, SNHG16 was able to bind and regulate the expression of miR-455-3p. Moreover, SNHG16 also regulated the expression of Notch2 by targeting miR-455-3p. Finally, SNHG16 could promote fibrogenesis by regulating the expression of Notch2. Conclusion Taken together, our study demonstrated that SNHG16 promoted pulmonary fibrosis by targeting miR-455-3p to regulate the Notch2 pathway. These findings might provide a novel insight into pathologic process of lung fibrosis and may provide prevention strategies in the future.


2019 ◽  
Vol 13 (3) ◽  
pp. 166-173 ◽  
Author(s):  
Sergio Harari ◽  
Antonella Caminati ◽  
Marco Confalonieri ◽  
Venerino Poletti ◽  
Carlo Vancheri ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 20 ◽  
Author(s):  
Deborah L Clarke ◽  
Alan M Carruthers ◽  
Tomas Mustelin ◽  
Lynne A Murray

Sign in / Sign up

Export Citation Format

Share Document