scholarly journals Production of Biocellulosic Ethanol from Wheat Straw

10.14311/1542 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
W. Ali Ismail ◽  
R. Rasul Braim ◽  
K. Aziz Ketuly ◽  
D. Siti Shamsiah Awang Bujag ◽  
Zainudin Arifin

Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses).Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

2011 ◽  
Vol 383-390 ◽  
pp. 5453-5457 ◽  
Author(s):  
Jun Ping Zhuang ◽  
Lu Lin ◽  
Sun Yong ◽  
Chun Sheng Pang

Xylitol can be obtained from hemicelullosic fraction of lignocellulosic materials containing D-xylose. Formic acid hydrolysis is widely used in lignocellulose pretreatment. However, formic acid hydrolysis wheat straw cannot be directly used as fermentation subsequently owing to various fermentation inhibitors, especially the formic acid in reaction system and released during pretreatment. This study describes main hydrolysis components and inhibitors prepared by hydrolysis of wheat straw with formic acid solution, and different detoxification methods ware used to romve the inhibitors. Study found treatment of wheat straw hydrolysate with overliming treatment and D311 ion-exchange resin had a good result on reduction formic acid and other main inhibitors, results showed which can eliminate 94% of residual formic acid and with only 15% reducion of xylose. To verify the effectiveness of different detoxification methods, hydrolysates of detoxification werr fermented by Candida.tropicalis AS2.1776, and the results also found that the hydrolysate treatmented with overliming treatment and D311 ion-exchange resin have the hightest xylitol yield.


Author(s):  
Pujoyuwono Martosuyono

The objective of this research are to determine the Saccharification and fermentation efficiency of seaweed solid waste hydrolysate by S. cerevisiae in anaerobic condition. The optimum saccharification yield of acid pretreated waste (40.93+1.72%) was obtained after 48 h with a saccharification rate of 0.51±0.02 g/L/h. Higher yield was showed by NaOH pretreated waste (67.29+1.24%) at 24 hours with a saccharification rate of 0.81±0.06 g/L/h. . Fermentation of enzymatic hydrolysates of acid and base pretreated samples with S. cerevisiae produced maximum ethanol 7.52±0.24 g/L and 14.5+0.54 g/L respectively after 72 hours fermentation. Maximum ethanol yield of 0.31±0.03 g/g and 0.40+0.02 g/g sugar respectively for acid and base pretreated samples. The ethanol yields showing that base pretreated sample was producing higher conversion ratio of substrate (80% of theoretical yield) compared to acid pretreated sample (62% of theoretical yield).  


2008 ◽  
Vol 153 (1-3) ◽  
pp. 116-126 ◽  
Author(s):  
Luís C. Duarte ◽  
Talita Silva-Fernandes ◽  
Florbela Carvalheiro ◽  
Francisco M. Gírio

2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


1985 ◽  
Author(s):  
John F. Harris ◽  
Andrew J. Baker ◽  
Anthony H. Conner ◽  
Thomas W. Jeffries ◽  
James L. Minor ◽  
...  

2012 ◽  
Vol 36 ◽  
pp. 346-355 ◽  
Author(s):  
Esther Guerra-Rodríguez ◽  
Oscar M. Portilla-Rivera ◽  
Lorenzo Jarquín-Enríquez ◽  
Jose A. Ramírez ◽  
Manuel Vázquez

2019 ◽  
Vol 57 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Anamarija Štafa ◽  
Andrea Pranklin ◽  
Ivan Krešimir Svetec ◽  
Božidar Šantek ◽  
Marina Svetec Miklenić ◽  
...  

Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.


2016 ◽  
Vol 33 ◽  
pp. S91-S92
Author(s):  
Eun-Hee Park ◽  
Chan-Yeong Choi ◽  
Yun-Ji Cho ◽  
Myoung-Dong Kim

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ping Wan ◽  
Dongmei Zhai ◽  
Zhen Wang ◽  
Xiushan Yang ◽  
Shen Tian

Saccharomyces cerevisiae Y5 (CGMCC no. 2660) and Issatchenkia orientalis Y4 (CGMCC no. 2159) were combined individually with Pichia stipitis CBS6054 to establish the cocultures of Y5 + CBS6054 and Y4 + CBS6054. The coculture Y5 + CBS6054 effectively metabolized furfural and HMF and converted xylose and glucose mixture to ethanol with ethanol concentration of 16.6 g/L and ethanol yield of 0.46 g ethanol/g sugar, corresponding to 91.2% of the maximal theoretical value in synthetic medium. Accordingly, the nondetoxified dilute-acid hydrolysate was used to produce ethanol by co-culture Y5 + CBS6054. The co-culture consumed glucose along with furfural and HMF completely in 12 h, and all xylose within 96 h, resulting in a final ethanol concentration of 27.4 g/L and ethanol yield of 0.43 g ethanol/g sugar, corresponding to 85.1% of the maximal theoretical value. The results indicated that the co-culture of Y5 + CBS6054 was a satisfying combination for ethanol production from non-detoxified dilute-acid lignocellulosic hydrolysates. This co-culture showed a promising prospect for industrial application.


Sign in / Sign up

Export Citation Format

Share Document