scholarly journals AE Aquarii: A Short Review

2015 ◽  
Vol 2 (1) ◽  
pp. 86-89 ◽  
Author(s):  
P. J. Meintjes ◽  
A. Odendaal ◽  
H. Van Heerden

The nova-like variable AE Aquarii has been continuously studied since its discovery on photographic plates in 1934. In this short review the peculiar multi-wavelength properties of AE Aquarii will be reviewed and explained in context of its evolution from a high mass transfer phase, during which period it could have been a supersoft X-ray source (SSS).

2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


2018 ◽  
Vol 14 (S346) ◽  
pp. 417-425 ◽  
Author(s):  
Jakub Klencki ◽  
Gijs Nelemans

AbstractX-ray binaries with black hole (BH) accretors and massive star donors at short orbital periods of a few days can evolve into close binary BH (BBH) systems that merge within the Hubble time. From an observational point of view, upon the Roche-lobe overflow such systems will most likely appear as ultra-luminous X-ray sources (ULXs). To study this connection, we compute the mass transfer phase in systems with BH accretors and massive star donors (M > 15 Mʘ) at various orbital separations and metallicities. In the case of core-hydrogen and core-helium burning donors (cases A and C of mass transfer) we find the typical duration of super-Eddington mass transfer of up to 106 and 105 yr, with rates of 10−6 and 10−5Mʘ yr-1, respectively. Given that roughly 0.5 ULXs are found per unit of star formation rate, we estimate the rate of BBH mergers from stable mass transfer evolution to be at most 10 Gpc−3 yr−1.


1984 ◽  
Vol 80 ◽  
pp. 199-227
Author(s):  
C. De Loore

AbstractComparison of the characteristics of groups of stars in various evolutionary phases and the study of individual systems allow to make estimates of the parameters governing mass loss and mass transfer. Observations enable us in a few cases to determine geometric models for binaries during or after the mass transfer phase (disks, rings, common envelopes, symbiotics, interacting binaries, compact components).From spectra taken at different phases, radial velocity curves can be derived and masses and radii can be determined. In special cases spectra in different spectral ranges (visual, UV, X-ray) are required for the determination of the radial velocities of the two components (for X-ray binaries, for systems with hot and cool components). Information on parameters related to the mass transfer process enables us to consider non conservative evolution - i.e. the computation of evolutionary sequences with the assumption that mass and angular momentum not only are transferred from one of the components towards the other one, but that also mass and angular momentum can leave the system. Careful and detailed analysis of the observations allows in certain cases to determine the parameters governing this mass and angular momentum loss, and for contact phases, to determine the degree of contact.


1997 ◽  
Vol 163 ◽  
pp. 787-787
Author(s):  
K. Reinsch ◽  
A. van Teeseling ◽  
K. Beuermann ◽  
T.M.C. Abbott

The transient luminous soft X-ray source RXJ0513.9–6951 (Schaeidt et al., 1993, A&A 270, L9) is a high-mass-transfer binary system (Cowley et al., 1993, ApJ 418, L63; Pakull et al., 1993, A&A 278, L39) with a probable orbital period of 0.76 days (Crampton et al., 1996, ApJ 456, 320). Here, we summarize the results of a quasi-simultaneous optical and X-ray monitoring (see Fig. 1). The sudden decrease of the optical flux, the accompanying reddening, and the turn-on in the soft X-ray band can be quantitatively described by variations in the irradiation of the accretion disk by the hot central star (Reinsch et al., 1996, A&A 309, L11). In this simple model, we consider a white dwarf with nuclear burning of accreted matter (van den Heuvel et al., 1992, A&A 262, 97), surrounded by a flat standard disk. In the optical high state, accretion at near-Eddington rate occurs and the white dwarf photospheric radius must be considerably expanded causing an enhanced illumination of the disk and the secondary. In the optical low state, the photosphere shrinks in response to a temporarily slightly reduced mass-transfer rate. At the same time, the effective temperature increases, and the soft X-ray flux becomes detectable with ROSAT. This model does not depend on the particular cause for the drop in the accretion rate and can describe the optical/ X-ray variability with the total luminosity changing by less than 20 %.


2019 ◽  
Vol 622 ◽  
pp. L3 ◽  
Author(s):  
I. El Mellah ◽  
J. O. Sundqvist ◽  
R. Keppens

Ultraluminous X-ray sources (ULXs) have such high X-ray luminosities that they were long thought to be accreting intermediate-mass black holes. Yet, some ULXs have been shown to display periodic modulations and coherent pulsations suggestive of a neutron star in orbit around a stellar companion and accreting at super-Eddington rates. In this Letter, we propose that the mass transfer in ULXs could be qualitatively the same as in supergiant X-ray binaries (SgXBs), with a wind from the donor star highly beamed towards the compact object. Since the star does not fill its Roche lobe, this mass transfer mechanism known as “wind Roche lobe overflow” can remain stable even for large donor-star-to-accretor mass ratios. Based on realistic acceleration profiles derived from spectral observations and modeling of the stellar wind, we compute the bulk motion of the wind to evaluate the fraction of the stellar mass outflow entering the region of gravitational predominance of the compact object. The density enhancement towards the accretor leads to mass-transfer rates systematically much larger than the mass-accretion rates derived by the Bondi-Hoyle-Lyttleton formula. We identify orbital and stellar conditions for a SgXBs to transfer mass at rates necessary to reach the ULX luminosity level. These results indicate that Roche-lobe overflow is not the only way to funnel large quantities of material into the Roche lobe of the accretor. With the stellar mass-loss rates and parameters of M101 ULX-1 and NGC 7793 P13, wind Roche-lobe overflow can reproduce mass-transfer rates that qualify an object as an ULX.


2016 ◽  
Vol 12 (S323) ◽  
pp. 104-108
Author(s):  
Rodolfo Montez

AbstractX-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked “hot bubble” plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.


2018 ◽  
Vol 14 (S346) ◽  
pp. 93-97
Author(s):  
Amit Kashi

AbstractUsing high resolution 3D hydrodynamical simulations we quantify the amount of mass accreted onto the secondary star of the binary system η Carinae during periastron passage on its highly eccentric orbit. The accreted mass is responsible for the spectroscopic event occurring every orbit close to periastron passage, during which many lines vary and the x-ray emission associated with the destruction wind collision structure declines. The system is mainly known for its giant eruptions that occurred in the nineteenth century. The high mass model of the system, M1=170M⊙ and M2=80M⊙, gives Macc≍ 3×10−6M⊙ compatible with the amount required for explaining the reduction in secondary ionization photons during the spectroscopic event, and also matches its observed duration. As accretion occurs now, it surely occurred during the giant eruptions. This implies that mass transfer can have a huge influence on the evolution of massive stars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 468-470
Author(s):  
Konstantin Pavlovskii ◽  
Natalia Ivanova

AbstractUltra-compact X-ray binaries (UCXBs) are accreting systems with periods less than 1 hour, which qualifies them to contain a degenerate donor-companion. One would expect such systems to have the easiest theoretical explanation, compared to other kinds of X-ray binaries. Nonetheless, current theory fails to explain high mass transfer (MT) rates in three recently well observed long-period UCXBs. We find that this range of MT rates can be maintained if the donor is a remnant of an out-of-thermal-equilibrium naked core of a giant which was revealed in a very recent episode of a common envelope (CE) event.


1984 ◽  
Vol 105 ◽  
pp. 399-402 ◽  
Author(s):  
G.M.H.J. Habets

A 2.5 M⊙helium star remnant of a Case B mass transfer is evolved to off-centre neon ignition and a second mass transfer phase, Case BB, is explored. The model for the formation of Be/X-ray binaries by mass-transfer dominated evolution in an intermediate mass binary is confirmed.


1999 ◽  
Vol 193 ◽  
pp. 550-558
Author(s):  
J. Miguel Mas-Hesse ◽  
Miguel Cerviño

We present in this contribution our set of multi-wavelength synthesis models including the evolution of single and binary stars. The main results we have obtained can be summarized as follows: (a) massive close-binary systems will start to experience mass transfer episodes after the first 4Myr of the starburst evolution; (b) as a result of these mass transfer processes, stars of relatively low initial mass can lose completely their envelope and become a Wolf-Rayet star. In this way, the formation of WR stars is extended over longer than 15 Myr, and does not stop at 6Myr as predicted by models including only single stars; (c) WR stars can thus be coeval with red supergiants, which peak at around 10 Myr for solar metallicities; (d) the accretion of mass will originate relatively massive stars at ages for which they should have already disappeared; these stars, together with the WR stars formed in rather evolved clusters, increase the production of ionizing photons, so that the Hβ equivalent width will not drop as rapidly as predicted by models considering only individual stars; and (e) the mass transfer to compact companions will produce an additional source of high-energy radiation in the form of high-mass X-ray binaries, not predicted either by standard synthesis models.


Sign in / Sign up

Export Citation Format

Share Document