scholarly journals Uncertainty of Thermographic Temperature Measurement of Electric Units Contained in Switchgear

2021 ◽  
Vol 25 (4) ◽  
pp. 31-36
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz

The result of the works presented is the uncertainty budget of a thermographic temperature measurement taken through an IR window. The type B uncertainty determination method has been employed. Publication of European Accreditation EA-4/02 has been patterned. Conditions prevailing in course of the thermographic temperature measurement of low-voltage electric units contained in the switchgear were recreated as part of the works. The measurement system has been presented. Components of the infrared radiation reaching the camera lens in case when an IR window was used and when an IR window was not used have been discussed. Uncertainties estimated for the measurement done with an IR window and without an IR window have been compared.

2017 ◽  
Vol 47 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Premysl Janu ◽  
Sang Van Doan

One of the most important systems of an aircraft jet engine is exhaust gas temperature measurement system that ensure right function of the engine. Temperature of the gas flowing from the engine turbine is quite high. There is one way, how to measure high temperature and it is by thermocouple. So the main aim of the paper is to describe creation and correct function analysis of a thermocouple simulator. Thermocouple generates very low voltage depending on a temperature that ranges from units micro-volts to several tens of millivolts. Generating of such low voltage using simulator is not easy, because this voltage may move at levels of noise. Voltage generation is performed by digital-analogue converter, which is controlled by a microcontroller via SPI bus. The generated voltage is further reduced to a level corresponding to the voltage output of the thermocouple. Several calibration waveforms are performed belonging to appropriate thermocouple type for multifunctional use. Only positive temperatures are generated, because exhaust gas temperature measurement system is aimed at high temperatures. The power supply circuit offers two options. It is supply from accumulator for its portability or from the laboratory power supply. Surface mounted devices are selected in terms of module miniaturization. The newest device base is chosen for modern design of the module. The temperature waveform is generated by the way of polynomial approximation with correction. Dependence of real generated voltage on the voltage, which is defined by appropriate thermocouple type standard and errors evaluation, is used as a proof of proper function.


2021 ◽  
Vol 21 (6) ◽  
pp. 185-190
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz

Abstract The thermographic temperature measurement is burdened with uncertainty. This non-contact temperature measurement method makes it possible to measure the temperature of the electrical device under load. When the observed object is small (a few square millimeters) the spatial resolution of the thermographic cameras is often insufficient. In this case, the use of the additional macro lens is needed. After using an additional lens, the uncertainty of the thermographic measurement is different from the uncertainty of thermographic measurement without an additional lens. The values of the uncertainty contributions depend on the conditions during the measurement and the used methodology. The authors constructed an uncertainty budget of thermographic temperature measurement with an additional macro lens, based on EA-4/02 (European Accreditation publications). The uncertainty contributions were also calculated. On the basis of the calculated values of the uncertainty contributions, it was determined which factor had the greatest impact on the value of the thermographic temperature measurement with an additional lens.


2021 ◽  
Vol 25 (4) ◽  
pp. 25-30
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz

The article presents summaries of works which have resulted in the presentation of a formula making it possible to determine an approximate transmittance of an IR window used in thermographic measurements of electric device temperatures. The equation was formulated after analysing components of the IR radiation reaching the camera lens in case when an IR window was not used and when an IR window was used. Conditions prevailing in course of the thermographic temperature measurement of electric devices contained in the switchgear were recreated in the performance of the works. The measurement system which was used in the experiment has been presented. Components of the IR radiation reaching the camera lens in case when the IR window was used and when the IR window was not used have been discussed. The obtained transmittance results of windows VPFR-75 FRK100-CL have been compared against data from literary sources.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4013
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz ◽  
Grzegorz Dombek

The number of components of a thermographic temperature measurement uncertainty budget and their ultimate contribution depend on the conditions in which the measurement is performed. The acquired data determine the accuracy with which the uncertainty component is estimated. Unfortunately, when some factors have to be taken into account, it is difficult to determine the value of the uncertainty component caused by the occurrence of this factor. In the case of a thermographic temperature measurement, such a factor is the lack of sharpness of the registered thermogram. This problem intensifies when an additional macro lens must be used. Therefore, it is decided to commence research to prepare an uncertainty budget of thermographic measurement with an additional macro lens based on the B method described in EA-4/02 (European Accreditation publications). As a result, the contribution of factors in the uncertainty budget of thermographic measurement with additional macro lens and the value of expanded uncertainty were obtained.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110181
Author(s):  
Wei-Ling Lin ◽  
Chun-Hung Hsieh ◽  
Tung-Shou Chen ◽  
Jeanne Chen ◽  
Jian-Le Lee ◽  
...  

Today, the most serious threat to global health is the continuous outbreak of respiratory diseases, which is called Coronavirus Disease 2019 (COVID-19). The outbreak of COVID-19 has brought severe challenges to public health and has attracted great attention from the research and medical communities. Most patients infected with COVID-19 will have fever. Therefore, the monitoring of body temperature has become one of the most important basis for pandemic prevention and testing. Among them, the measurement of body temperature is the most direct through the Forehead Thermometer, but the measurement speed is relatively slow. The cost of fast-checking body temperature measurement equipment, such as infrared body temperature detection and face recognition temperature machine, is too high, and it is difficult to build Disease Surveillance System (DSS). To solve the above-mentioned problems, the Intelligent pandemic prevention Temperature Measurement System (ITMS) and Pandemic Prevention situation Analysis System (PPAS) are proposed in this study. ITMS is used to detect body temperature. However, PPAS uses big data analysis techniques to prevent pandemics. In this study, the campus field is used as an example, in which ITMS and PPAS are used. In the research, Proof of Concept (PoC), Proof of Service (PoS), and Proof of Business (PoB) were carried out for the use of ITMS and PPAS in the campus area. From the verification, it can be seen that ITMS and PPAS can be successfully used in campus fields and are widely recognized by users. Through the verification of this research, it can be determined that ITMS and PPAS are indeed feasible and capable of dissemination. The ITMS and PPAS are expected to give full play to their functions during the spread of pandemics. All in all, the results of this research will provide a wide range of applied thinking for people who are committed to the development of science and technology.


Sign in / Sign up

Export Citation Format

Share Document