scholarly journals Lymphatic system and adipose tissue: Crosstalk in health and disease

2021 ◽  
Vol 18 (3) ◽  
pp. 336-344
Author(s):  
V. V. Klimontov ◽  
D. M. Bulumbaeva

The lymphatic system (LS) is one of the main integrative systems of the body, providing protective and transport functions. In recent years, interactions between LS and adipose tissue (AT) have been of particular interest. Lymphatic vessels play an important role in metabolic and regulatory functions of AT, acting as a collector of lipolysis products and adipokines. In its turn, hormones and adipocytokines that produced in adipocytes (including leptin, adiponectin, IL-6, TNF-α, etc.) affect the function of lymphatic endothelial cells and control the growth of lymphatic vessels. Cooperation between LS and AT becomes pathogenetically and clinically important in lymphedema and obesity. It is known that both primary and secondary lymphedema are characterized by increased fat accumulation which is associated with the severity of lymphostasis and inflammation. Similarly, in obesity, the drainage function of LS is impaired, which is accompanied by perilymphatic mononuclear infiltration in the AT. The development of these changes is facilitated by endocrine dysfunction of adipocytes and impaired production of adipocytokines. The increase in the production of inflammatory mediators and the disruption of the traffic of inflammatory cells causes a further deterioration in the outflow of interstitial fluid and exacerbates the inflammation of the AT, thereby forming a vicious circle. The role of lymphangiogenesis in AT remodeling in obesity needs further research. Another promising area of research is the study of the role of intestinal LS in the development of obesity and related disorders. It has been shown that the transport of chylomicrons from the intestine depends on the expression of a number of molecular mediators (VEGF-C, DLL-4, neuropilin-1, VEGFR-1, CD36/FAT, etc.)in the endotheliocytes of the intestinal lymphatic vessels, as well as the functioning of «push-button» and “zippering” junctions between endothelial cells. New approach to the treatment of obesity based on blockade of lymphatic chylomicrontransport has been experimentally substantiated. Further identification of the molecular mechanisms and signaling pathways that determine the remodeling of AT in lymphedema and obesity are likely to provide new approaches to the treatment of these diseases.

2019 ◽  
Vol 18 (1) ◽  
pp. 104-112 ◽  
Author(s):  
G. I. Lobov

Accomplishments in the identifcation of lymphatic endothelial cells and the ability to differentiate them from the endothelial cells of blood vessels have contributed to progress in recent decades in studying the role of the lymphatic system in the body. Preclinical and clinical studies of the last decade have shown that changes in the lymphatic vascular network are observed in almost all lung diseases. At the same time, it remains unclear whether the lymphatic vessels and lung nodes are being part of the overall process of lung remodeling or they make a defnite contribution to the pathogenesis of diseases of the respiratory system. This review presents current data on the morphology and physiology of lymphatic vessels and nodes, their role in the regulation of interstitial fluid homeostasis, lipid transportation and immune responses as well as describes the mechanisms of regulation of the transport function of lymphatic vessels. Data on the role of the lymphatic system of the lungs in the exchange of fluid in the interstitial space of the lungs are presented in the review. The results of studies of the last two decades on the formation and reabsorption of pleural fluid and the role of various lymphatic networks in regulating its volume are described. Finally, modern ideas on the mechanisms of pulmonary edema are outlined and important questions of the lymphatic biology of the respiratory system are identifed, still remaining unanswered today.


2002 ◽  
Vol 82 (3) ◽  
pp. 673-700 ◽  
Author(s):  
Lotta Jussila ◽  
Kari Alitalo

Blood and lymphatic vessels develop in a parallel, but independent manner, and together form the circulatory system allowing the passage of fluid and delivering molecules within the body. Although the lymphatic vessels were discovered already 300 years ago, at the same time as the blood circulation was described, the lymphatic system has remained relatively neglected until recently. This is in part due to the difficulties in recognizing these vessels in tissues because of a lack of specific markers. Over the past few years, several molecules expressed specifically in the lymphatic endothelial cells have been characterized, and knowledge about the lymphatic system has started to accumulate again. The vascular endothelial growth factor (VEGF) family of growth factors and receptors is involved in the development and growth of the vascular endothelial system. Two of its family members, VEGF-C and VEGF-D, regulate the lymphatic endothelial cells via their receptor VEGFR-3. With the aid of these molecules, lymphatic endothelial cells can be isolated and cultured, allowing detailed studies of the molecular properties of these cells. Also the role of the lymphatic endothelium in immune responses and certain pathological conditions can be studied in more detail, as the blood and lymphatic vessels seem to be involved in many diseases in a coordinated manner. Discoveries made so far will be helpful in the diagnosis of certain vascular tumors, in the design of specific treatments for lymphedema, and in the prevention of metastatic tumor spread via the lymphatic system.


Blood ◽  
2016 ◽  
Vol 128 (9) ◽  
pp. 1169-1173 ◽  
Author(s):  
John D. Welsh ◽  
Mark L. Kahn ◽  
Daniel T. Sweet

Abstract Aside from the established role for platelets in regulating hemostasis and thrombosis, recent research has revealed a discrete role for platelets in the separation of the blood and lymphatic vascular systems. Platelets are activated by interaction with lymphatic endothelial cells at the lymphovenous junction, the site in the body where the lymphatic system drains into the blood vascular system, resulting in a platelet plug that, with the lymphovenous valve, prevents blood from entering the lymphatic circulation. This process, known as “lymphovenous hemostasis,” is mediated by activation of platelet CLEC-2 receptors by the transmembrane ligand podoplanin expressed by lymphatic endothelial cells. Lymphovenous hemostasis is required for normal lymph flow, and mice deficient in lymphovenous hemostasis exhibit lymphedema and sometimes chylothorax phenotypes indicative of lymphatic insufficiency. Unexpectedly, the loss of lymph flow in these mice causes defects in maturation of collecting lymphatic vessels and lymphatic valve formation, uncovering an important role for fluid flow in driving endothelial cell signaling during development of collecting lymphatics. This article summarizes the current understanding of lymphovenous hemostasis and its effect on lymphatic vessel maturation and synthesizes the outstanding questions in the field, with relationship to human disease.


Author(s):  
Khairunnisa’ Md Yusof ◽  
Kira Groen ◽  
Rozita Rosli ◽  
Kelly A. Avery-Kiejda

Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Corina Marziano ◽  
Gael Genet ◽  
Karen K. Hirschi

AbstractThere are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.


2010 ◽  
Vol 113 (3) ◽  
pp. 622-629 ◽  
Author(s):  
J. Marc Simard ◽  
Kristopher T. Kahle ◽  
Volodymyr Gerzanich

Microvascular failure largely underlies the damaging secondary events that accompany traumatic brain injury (TBI). Changes in capillary permeability result in the extravasation of extracellular fluid, inflammatory cells, and blood, thereby producing cerebral edema, inflammation, and progressive secondary hemorrhage (PSH). Recent work in rat models of TBI and stroke have implicated 2 ion transport proteins expressed in brain endothelial cells as critical mediators of edema formation: the constitutively expressed Na+-K+-2Cl– cotransporter, NKCC1, and the trauma/ischemia-induced SUR1-regulated NCCa-ATP (SUR1/TRPM4) channel. Whereas NKCC1 function requires adenosine 5′-triphosphate (ATP), activation of SUR1/TRPM4 occurs only after ATP depletion. This opposite dependence on intracellular ATP levels implies that one or the other mechanism will activate/deactivate as ATP concentrations rise and fall during periods of ischemia/reperfusion, resulting in continuous edema formation regardless of cellular energy status. Moreover, with critical ATP depletion, sustained opening of SUR1/TRPM4 channels results in the oncotic death of endothelial cells, leading to capillary fragmentation and PSH. Bumetanide and glibenclamide are 2 well-characterized, safe, FDA-approved drugs that inhibit NKCC1 and the SUR1/TRPM4 channel, respectively. When used alone, these drugs have provided documented beneficial effects in animal models of TBI- and ischemiaassociated cerebral edema and PSH. Given the mechanistic and temporal differences by which NKCC1 and the SUR1/TRPM4 channel contribute to the pathophysiological mechanisms of these events, combination therapy with bumetanide and glibenclamide may yield critical synergy in preventing injury-associated capillary failure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan-chi Teng ◽  
Alfredo Leonardo Porfírio-Sousa ◽  
Giulia Magri Ribeiro ◽  
Marcela Corso Arend ◽  
Lindolfo da Silva Meirelles ◽  
...  

Abstract Background Peripheral arterial disease (PAD) affects millions of people and compromises quality of life. Critical limb ischemia (CLI), which is the most advanced stage of PAD, can cause nonhealing ulcers and strong chronic pain, and it shortens the patients’ life expectancy. Cell-based angiogenic therapies are becoming a real therapeutic approach to treat CLI. Pericytes are cells that surround vascular endothelial cells to reinforce vessel integrity and regulate local blood pressure and metabolism. In the past decade, researchers also found that pericytes may function as stem or progenitor cells in the body, showing the potential to differentiate into several cell types. We investigated the gene expression profiles of pericytes during the early stages of limb ischemia, as well as the alterations in pericyte subpopulations to better understand the behavior of pericytes under ischemic conditions. Methods In this study, we used a hindlimb ischemia model to mimic CLI in C57/BL6 mice and explore the role of pericytes in regeneration. To this end, muscle pericytes were isolated at different time points after the induction of ischemia. The phenotypes and transcriptomic profiles of the pericytes isolated at these discrete time points were assessed using flow cytometry and RNA sequencing. Results Ischemia triggered proliferation and migration and upregulated the expression of myogenesis-related transcripts in pericytes. Furthermore, the transcriptomic analysis also revealed that pericytes induce or upregulate the expression of a number of cytokines with effects on endothelial cells, leukocyte chemoattraction, or the activation of inflammatory cells. Conclusions Our findings provide a database that will improve our understanding of skeletal muscle pericyte biology under ischemic conditions, which may be useful for the development of novel pericyte-based cell and gene therapies.


Development ◽  
1971 ◽  
Vol 26 (3) ◽  
pp. 481-495
Author(s):  
Par Elisabeth Houssaint ◽  
Nicole Le Douarin

Cholinesterases in the chick liver. The role of the endoderm in the appearance of the activity of cholinesterases in the hepatic mesenchyme The histochemical method of Koelle & Friedenwald (1949), as modified by Gerebtzoff (1953), has been used to investigate the distribution of cholinesterases in the chick embryonic and adult liver. Non-specific cholinesterases and, in a lower proportion acetylcholinesterase, have been detected in the endothelial cells of blood sinusoids of both adult and embryonic hepatic tissue. The hepatocytes do not show any cholinesterase activity. Cholinesterases appear precociously in the liver mesenchyme, since they already occur in the septum transversum of the 3-day-old chick embryo. An experimental procedure preventing the invasion of the hepatic mesenchymal Anlage by the endodermic cords has been used. The experimentally isolated hepatic mesenchyme shows an important cholinesterase activity; therefore this activity does not depend on the presence of the hepatocytes. The grafting of the determined hepatic endodern in the somatopleura of the 3-day-old chick embryo results in the development of hepatic tissue in the body wall. In this experimentally produced liver, cholinesterase activities are present in the endothelial cells which have arisen from somatopleura mesenchymal cells, though normally somatopleural mesenchyme does not possess these enzymes. The role of the endoderm in the appearance of this enzymic activity in the somatopleural mesenchyme is discussed.


Author(s):  
Ya.O. Yemchenko ◽  
K.Ye. Ishcheikin ◽  
I.P. Kaidashev

Psoriasis is one of the most common chronic recurrent systemic autoimmune multifactorial diseases, affected the skin, joints, internal organs and systems of the body. Despite the significant prevalence of psoriasis and a large number of studies devoted this problem there is still no single view on the pathogenesis of this dermatosis. To clear up the pathogenesis of psoriasis, it seems to be reasonable to focus on the common comorbidities or multimorbidities, which may occur in the course of psoriasis, as this issue is still insufficiently studied. Recent reports have proven the evidences of indisputable link between psoriasis and obesity. The scientific literature extensively covers the issues of identical pathogenetic mechanisms of inflammatory processes in psoriasis and obesity. Given the current data on the role of systemic inflammation underlying the development of both psoriasis and obesity, the study of molecular mechanisms of its development and in particularly the role of proinflammatory nuclear transcription factors, thiazolidinediones have been found out as pathogenetically justified medicine of choice for the therapy of these diseases. In this study, we determined the effectiveness of using 30 mg of pioglitazone daily for 6 months in the course of treatment for patients with extensive psoriasis vulgaris of moderate severity, who were also diagnosed as having concomitant grade І-ІІ alimentary obesity that was supported by clinical and immunological findings evidenced of systemic inflammation. Analyzing the results obtained, we have found out the prolonged therapy with pioglitazone leads to a decrease in systemic inflammation and contributes to a milder recurrent course of psoriasis.


2019 ◽  
Vol 484 (2) ◽  
pp. 224-227
Author(s):  
N. S. Glebezdina ◽  
A. A. Olina ◽  
I. V. Nekrasova ◽  
E. M. Kuklina

We investigated the role of epiphyseal hormone melatonin in the differentiation of naive CD4+T cells into regulatory T cells (Treg). The hormone at physiological and pharmacological concentrations inhibited Treg differentiation, decreasing both the proportion of CD4+FOXP3+ cells in the culture and the level of TGF‑β, the key cytokine for this T cell subpopulation. The inhibitory effect of exogenous melatonin was due to its interaction with the membrane receptors MT1 and MT2. At the same time, the signals realized through RORa — the nuclear receptor for melatonin — stimulated Treg formation; however, they were considerably weaker than the signals from the membrane receptors and were overlapped by the latter. Since the Treg subpopulation plays an important role in physiological and pathological processes in the body, the revealed effects of melatonin should be taken into account in its therapeutic use.


Sign in / Sign up

Export Citation Format

Share Document