scholarly journals Hypothalamo-pituitary-adrenocortical function in the ontogenesis in rats with hereditary stress-induced arterial hypertension

2001 ◽  
Vol 47 (1) ◽  
pp. 34-36
Author(s):  
V. V. Bulygina ◽  
L. N. Maslova ◽  
A. L. Markel

Functional activity of the hypothalamo-pituitary-adrenocortical system (HPAS) was evaluated over time in rats with hereditary stress-induced arterial hypertension (HSIAH) and normotensive Wistar rats. Peripheral blood plasma corticosterone was measured in rats aged 2, 3, 4, 6, 8, 10, 12, and 18 weeks at rest and after 1-h immobilization in perforated cylinders by competitive protein binding. Basal corticosterone level and HPAS reaction to stress were lower in hypertensive rats than in Wistar rats of the same age. The only exclusion was the age of 4 weeks, when hypertension starts to form in HSIAH rats and their HPAS is more sensitive to emotional stress than that of Wistar rate, this sensitivity being associated with increased adrenal reaction to ACTH. Decreased HPAS reaction to emotional stress in adult HSIAH rats was not associated with disorders in adrenal sensitivity to ACTH.

1983 ◽  
Vol 98 (1) ◽  
pp. 129-135 ◽  
Author(s):  
S. Harvey ◽  
H. Klandorf

The deprivation of food for 48 h markedly increased (P< 0·001) the corticosterone concentration in the plasma of 7- to 8-week-old chickens. When fasted birds were refed for 2 min or 5 s the corticosterone concentration fell to the level in fed birds within 30 min of refeeding. In fasted and refed birds the plasma corticosterone concentration remained lowered for at least 150 min after a 2-min period of refeeding, whereas in birds refed for 5 s the concentration had increased within 120 min to that in fasted birds. When fasted birds were refed 1, 5, 15 or 30 g diet the corticosterone level was again markedly reduced (P< 0·001) within 45 min of refeeding. The magnitude of this post-feeding decline was unrelated to the amount of food eaten, although its duration was; the level in birds refed 1, 5 or 15 g food increasing to that in fasted birds within 90, 135 and 225 min respectively. The corticosterone level in birds refed 30 g diet remained reduced for at least 225 min but increased to that in fasted birds 24 h after refeeding. The initial decline in the corticosterone concentration was unrelated to the consumption of food, since a similar reduction in the corticosterone level was observed in fasted birds which were given the sight of food but prevented from eating it by Perspex lids attached to the food troughs. This initial decline in the corticosterone level was not a result of stress, as it did not occur in fasted control birds. These results suggest that the adrenocortical changes in fasted and refed birds is initially mediated by a conditioned neural stimulus (reinforcement) and is maintained as a result of peripheral metabolic effects of ingested food. In fasted chickens the concentration of plasma tri-iodothyronine (T3) was greatly reduced (P<0·001) in comparison with fed birds. When fasted birds were refed for 2 min or with 5, 15 or 30 g diet, the level of plasma T3 was increased (P < 0·05) 90 min after refeeding although not to the level in birds which had free access to food. The magnitude and duration of this increase was related to the amount of food consumed and was not observed in birds refed for 5 s or with 1 g food or in fasted birds given sight of but not access to food.


1988 ◽  
Vol 116 (2) ◽  
pp. 179-183 ◽  
Author(s):  
A. Cheung ◽  
S. Harvey ◽  
T. R. Hall ◽  
S.-K. Lam ◽  
G. S. G. Spencer

ABSTRACT Young cockerels (6–8 weeks old) were injected with serum from sheep immunized against somatostatin-14 (anti-SRIF) or normal sheep serum (NSS). Blood samples were withdrawn periodically for the determination of plasma corticosterone concentration by radioimmunoassay. With frequent (every 10 min) sampling, NSS-treated control animals exhibited increased plasma corticosterone levels, presumably as a stress response to the experimental manipulation. Anti-SRIF stimulated a much greater increase in plasma corticosterone concentrations and a peak response was observed within 10 to 20 min, when the plasma corticosterone level reached more than twice that of the corresponding control value. With less frequent sampling, plasma corticosterone increased with anti-SRIF administration to as much as nine times the corresponding control value, and the peak response occurred much later. Under pentobarbitone anaesthesia, which itself increased basal corticosterone concentrations, anti-SRIF treatment promoted further increases in plasma corticosterone levels although to a smaller magnitude compared with conscious birds. The results suggest that endogenous somatostatin may play a role in the regulation of adrenocortical function in the domestic fowl. The mechanism of response may involve a central component. J. Endocr. (1988) 116, 179–183


1981 ◽  
Vol 241 (1) ◽  
pp. R21-R24 ◽  
Author(s):  
R. G. Doell ◽  
M. F. Dallman ◽  
R. B. Clayton ◽  
G. D. Gray ◽  
S. Levine

These experiments were undertaken to investigate the mechanism whereby a precipitous drop in plasma corticosterone concentration is brought about following drinking in rats on a restricted water schedule. No alteration in adrenocorticotrophic hormone (ACTH) output was found, nor was catabolism of corticosterone sufficient to account for the drop. It is concluded that corticosterone level is controlled under these conditions by a mechanism independent of ACTH concentration.


2021 ◽  
Vol 22 (3) ◽  
pp. 1382
Author(s):  
Jelena Nesovic Ostojic ◽  
Milan Ivanov ◽  
Nevena Mihailovic-Stanojevic ◽  
Danijela Karanovic ◽  
Sanjin Kovacevic ◽  
...  

Renal ischemia and reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). Pathogenesis of postischemic AKI involves hemodynamic changes, oxidative stress, inflammation process, calcium ion overloading, apoptosis and necrosis. Up to date, therapeutic approaches to treat AKI are extremely limited. Thus, the aim of this study was to evaluate the effects of hyperbaric oxygen (HBO) preconditioning on citoprotective enzyme, heme oxygenase-1 (HO-1), pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins expression, in postischemic AKI induced in normotensive Wistar and spontaneously hypertensive rats (SHR). The animals were randomly divided into six experimental groups: SHAM-operated Wistar rats (W-SHAM), Wistar rats with induced postischemic AKI (W-AKI) and Wistar group with HBO preconditioning before AKI induction (W-AKI + HBO). On the other hand, SHR rats were also divided into same three groups: SHR-SHAM, SHR-AKI and SHR-AKI + HBO. We demonstrated that HBO preconditioning upregulated HO-1 and anti-apoptotic Bcl-2 protein expression, in both Wistar and SH rats. In addition, HBO preconditioning improved glomerular filtration rate, supporting by significant increase in creatinine, urea and phosphate clearances in both rat strains. Considering our results, we can also say that even in hypertensive conditions, we can expect protective effects of HBO preconditioning in experimental model of AKI.


1999 ◽  
Vol 277 (1) ◽  
pp. H399-H404 ◽  
Author(s):  
Pilar Nava ◽  
Verónica Guarner ◽  
Rosalinda Posadas ◽  
Israel Pérez ◽  
Guadalupe Baños

Insulin-elicited endothelin release in hypertriglyceridemic, hypertensive, hyperinsulinemic (HTG) rats was shown. Weanling male Wistar rats were given 30% sucrose in their drinking water for 20–24 wk. In vitro contractions of aorta and femoral arteries were elicited with 40 mM KCl. Endothelin release induced with KCl plus 50 μU/ml insulin resulted in increases in contractile responses: 41 ± 5.9 and 57 ± 6% for control and 65.5 ± 6 and 95 ± 9% for HTG aortas and femoral arteries, respectively. The endothelin ETB-receptor blocker BQ-788 decreased responses to KCl + insulin by 39 ± 8 and 53 ± 5% in control and 48 ± 13 and 79 ± 3.5% in HTG aortas and femoral arteries, respectively. The ETA-receptor antagonist PD-151242 inhibited these responses by 12 ± 10 and 1 ± 9% in control and by 51.5 ± 9 and 58.5 ± 1% in HTG aortas and femoral arteries, respectively. These results suggest that endothelin may contribute to the hypertension in this model.


Author(s):  
Senthil Murugan Murugaiyan ◽  
Rajesh Bhargavan

AbstractObjectivesAluminium is present in food preparations, antacids and many medications. It causes neurodegeneration thereby resulting in a spectrum of neurological disorders such as dementia, Alzheimer’s disease and anxiety. Bacopa monnieri (BM) is widely used in ayurvedic medicine to improve memory functions. Its anxiolytic property was investigated in this study by using elevated plus maze (EPM) and plasma corticosterone level.MethodsThirty rats were assigned into five groups. Control group received distilled water, and 0.5% tween 80, AlCl3 group received Aluminium Chloride (AlCl3), Protective groups (BM100 + AlCl3 group and BM200 + AlCl3 group) received AlCl3 and BM at two different doses, and the BM200 group received BM. The EPM experiment was performed at the end of the 4th week of oral administration of BM and AlCl3 followed by the measurement of plasma corticosterone.ResultsOral administration of AlCl3 to rats increases the levels of anxiety as seen in a decrease in the percentage of entries into the open arms of EPM, an increase in grooming frequency and defecation index. However, the rats in the protective groups shown an increase in the percentage of open arm entries and rearing frequency, and decreased grooming frequency and defecation index. AlCl3 alone treated group showed a significant increase in the plasma corticosterone levels compared to the control group. Whereas the protective groups have shown a significant decrease in the plasma corticosterone levels than the AlCl3 alone treated group.ConclusionsHence the BM has potential role in reverting the anxiogenic effect of AlCl3 in the amygdala as it is evident from the plasma corticosterone levels and the EPM parameters of different groups under study.


1977 ◽  
Vol 43 (5) ◽  
pp. 839-843 ◽  
Author(s):  
J. A. Severson ◽  
R. D. Fell ◽  
J. G. Tuig ◽  
D. R. Griffith

Plasma corticosterone concentrations and in vitro adrenal secretion of corticosterone were determined in exercise-trained rats. Rats, 100, 200, and 300 days of age, were trained for a 10-wk period by treadmill running. Following the training program, rats were subjected to an acute bout of swimming. Acute swimming elevated plasma corticosterone concentrations in all age groups. At 170 days of age, the plasma corticosterone concentration following swimming was higher in exercise-trained rats than in controls. The opposite was true of acutely swum rats at 270 and 370 days of age. Acute swimming elevated the in vitro adrenal gland response to adrenocorticotropic hormone stimulation in control rats at all ages and in trained rats at 170 days of age. The in vivo relationship of epinephrine and the pituitary adrenal system is suggested as a mechanism which could have caused this response. The relationship of secretion rates to plasma corticosterone concentrations indicated that extra-adrenal mechanisms, such as decreased turnover, were also responsible for the elevated plasma corticosterone levels observed in response to acute swimming.


Sign in / Sign up

Export Citation Format

Share Document