scholarly journals An Efficient Storage System for Adult Odonata Specimens, With Application for Other Museum Collections

2017 ◽  
Vol 31 (1-2) ◽  
pp. 15-22
Author(s):  
David C. A. Blades ◽  
Claudia Copley ◽  
Kasey Lee

Abstract A new system of storing adult Odonata (damselfly and dragonfly) specimens is described and compared to existing storage systems. The major design innovation is the use of tongue and groove (“zipper lock”) resealable polyethylene envelopes manufactured to fit the standard index card and specimen arrangement currently used in major collections. Other design improvements include low-cost, adhesive-free specimen trays and glass-top drawers built to fit in standard-dimension Cornell insect cabinets. Comparisons of materials and designs with other available systems are presented and discussed. Finally, examples are presented of this new system's applicability to other collections such as Lepidoptera and Archeology.

2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Author(s):  
Peggy P. Ip ◽  
Sammy Houssainy ◽  
H. Pirouz Kavehpour

Undeveloped small hydropower generation sites are abundant throughout the water conveyance infrastructure and natural rivers in the United States. Due to its small scale, micro-hydro development requires substantial upfront capital costs, maintenance and operation costs for customized engineering and construction. The significant investments required for developing small hydropower are inhibiting for utilities, residential and commercial users to adopt. An inexpensive energy storage system and a well-designed power controls system can be integrated with small hydropower sites to increase its cost-effectiveness and reliability. This paper introduces the concept of storing low-power generated from small hydro turbines during long off-peak periods and dispatching at high-power as grid-quality electricity during peak periods. The use of an ultra-low cost thermal energy storage (ULCTES) system is examined. Boosting the power output for small hydro generation allows commercial users to avoid significant demand charges during operation, making small hydro an attractive cost saving strategy and therefore breaking down the cost barrier. The ULCTES operates much like a bulk power production unit and a peaker plant, in which it is capable of dispatching constant power over a long period during peak periods when conventional sources are unavailable. Improvements in system reliability and economic value are evaluated using microgrid optimization software HOMER Energy. In particular, two cases are studied with variations in types of end users and energy management goals. Energy costs savings, demand charges savings and renewable energy penetration are determined. Distributed energy storage systems are shown to reduce energy costs and increase the renewable energy penetration for commercial users. With ULCTES, microgrids have the flexibility to manage fluctuating renewable energy generation as well as respond to rapidly changing loads on a daily basis. A larger hydroelectricity system is shown to be more feasible with distributed energy storage systems for isolated users without any connection to the grid.


2014 ◽  
Vol 587-589 ◽  
pp. 2346-2349 ◽  
Author(s):  
Xiao Yang Liang

Cloud computing is based on cloud storage. Cloud storage through a variety of technical storage device abstraction into virtual storage resource pool. Compared with the traditional way of storage, it has the scalability and high performance, low cost and other advantages. Different cloud storage systems have different technical architecture and characteristics. From the perspective of metadata if there is a center node, with and without the typical cloud storage system to do a simple introduction and mainly for open source without Gluster center system are analyzed in focus.


2014 ◽  
Vol 556-562 ◽  
pp. 5371-5376
Author(s):  
Ding Wei Wu ◽  
Qiang Wu ◽  
Xi Cheng Fu ◽  
Zhi Zhong Ye ◽  
Jia Lun Lin

In recent years, hybrid storage has gradually become a hotspot in the research of data storage owing to its high-performance and low cost. An OpenStack-based hybrid storage system is presented in this paper. According to the characteristics, the data is divided into small data, big data and temporary data in this hybrid storage system; meanwhile a storage strategy, combining database storage system, the virtual file system and servers file system, is designed. In the application of iCampus project, this proposed hybrid storage system shows better performance and higher efficiency than the traditional single storage systems.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2003 ◽  
Vol 3 (4) ◽  
pp. 169-175 ◽  
Author(s):  
S. Barbagallo ◽  
F. Brissaud ◽  
G.L. Cirelli ◽  
S. Consoli ◽  
P. Xu

In arid and semiarid regions the reclamation and reuse of municipal wastewater can play a strategic role in alleviating water resources shortages. Public awareness is growing about the need to recycle and reuse water for increasing supply availability. Many wastewater reuse projects have been put in operation in European and Mediterranean countries adopting extensive treatment systems such as aquifer recharge, lagooning, constructed wetlands, and storage reservoirs, mainly for landscape and agricultural irrigation. In agricultural reuse systems, there is an increasing interest in extensive technologies because of their high reliability, and easy and low cost operation and maintenance. Wastewater storage reservoirs have become the option selected in many countries because of the advantages they present in comparison with other treatment alternatives, namely the coupling of two purposes, stabilization and seasonal regulation. This paper describes an example of a wastewater storage system, built in Caltagirone (Sicily, Italy). The storage results in a tertiary treatment of a continuous inlet flow of activated sludge effluents. The prediction of the microbiological water quality has been evaluated by means of a non-steady-state first-order kinetic model. Single and multiple regressions were applied to determine the main variables that most significantly affected die-off coefficients. The proposed model has been calibrated using the results of a field monitoring carried out during a period from March to October 2000.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


Author(s):  
peisheng guo ◽  
gongzheng yang ◽  
Chengxin Wang

Aqueous zinc-ion batteries (AZIBs) have been regarded as alternative and promising large-scale energy storage systems due to their low cost, convenient manufacturing processes, and high safety. However, their development was...


Sign in / Sign up

Export Citation Format

Share Document