scholarly journals Recalcitrant carbon and nitrogen in agriculture soils with residue accumulation and fertilization under tropical conditions

2019 ◽  
pp. 732-740 ◽  
Author(s):  
Joseph Elias Rodrigues Mikhael ◽  
Risely Ferraz Almeida ◽  
Fernando de Oliveira Franco ◽  
Roberta Oliveira Camargo ◽  
Beno Wendling
Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 544
Author(s):  
Risely Ferraz de Almeida ◽  
Joseph Elias Rodrigues Mikhael ◽  
Fernando Oliveira Franco ◽  
Luna Monique Fonseca Santana ◽  
Beno Wendling

Soil organic carbon and nitrogen can be divided into labile and recalcitrant pools according to the time it takes to be cycled. The way in which carbon and nitrogen pools are cycled and distributed between labile and recalcitrant pools can directly relate to soil quality. This paper tested the hypothesis that labile and recalcitrant pools of carbon and nitrogen vary between agricultural soils with different species and fertilization management systems (nitrogen, phosphorus, and potassium need) under tropical conditions. This study aimed to examine the impact of land-uses on stocks and losses of carbon and nitrogen under tropical conditions. We explored labile (soil microbial biomass and labile carbon) and recalcitrant carbon pools (humin, humic acid, and fulvic acid) in forested and agricultural soils, defined as latosol (forest, fertilized pasture, and unfertilized pasture) and cambisol (forest, coast pasture, sugarcane, and silage corn). Forested soil was used as an appropriate use to soil conservation in tropical that presents levels adequate of carbon and nitrogen stocks and biological condition in soil. Results showed that pools of labile and recalcitrant carbon are different on soil layers and the use of soil. Forest use in cambisol and latosol promoted higher labile and recalcitrant pools of carbon and nitrogen due to the greater environmental stability without human intervention. On the other hand, human intervention occurred in fertilized pasture and coast pasture; however, both uses presented similar recalcitrant carbon and nitrogen pools when compared to forested soil on the soil surface due to fertilizer uses and the high volume of the grass root system. Overall, our findings reveal that under tropical conditions, agriculture and forested soil can present similar recalcitrant pools of carbon and nitrogen if agricultural soils are associated with the appropriate fertilizer management. Pasture with adequate fertilization management systems can be used as an alternative to recover degraded areas with low levels of recalcitrant carbon and nitrogen pools.


2020 ◽  
Vol 117 (9) ◽  
pp. 4675-4681 ◽  
Author(s):  
Nicolas Bourgon ◽  
Klervia Jaouen ◽  
Anne-Marie Bacon ◽  
Klaus Peter Jochum ◽  
Elise Dufour ◽  
...  

Stable carbon and nitrogen isotope ratios of collagen from bone and dentin have frequently been used for dietary reconstruction, but this method is limited by protein preservation. Isotopes of the trace element zinc (Zn) in bioapatite constitute a promising proxy to infer dietary information from extant and extinct vertebrates. The66Zn/64Zn ratio (expressed as δ66Zn value) shows an enrichment of the heavy isotope in mammals along each trophic step. However, preservation of diet-related δ66Zn values in fossil teeth has not been assessed yet. Here, we analyzed enamel of fossil teeth from the Late Pleistocene (38.4–13.5 ka) mammalian assemblage of the Tam Hay Marklot (THM) cave in northeastern Laos, to reconstruct the food web and assess the preservation of original δ66Zn values. Distinct enamel δ66Zn values of the fossil taxa (δ66Zncarnivore< δ66Znomnivore< δ66Znherbivore) according to their expected feeding habits were observed, with a trophic carnivore-herbivore spacing of +0.60‰ and omnivores having intermediate values. Zn and trace element concentration profiles similar to those of modern teeth also indicate minimal impact of diagenesis on the enamel. While further work is needed to explore preservation for settings with different taphonomic conditions, the diet-related δ66Zn values in fossil enamel from THM cave suggest an excellent long-term preservation potential, even under tropical conditions that are well known to be adverse for collagen preservation. Zinc isotopes could thus provide a new tool to assess the diet of fossil hominins and associated fauna, as well as trophic relationships in past food webs.


Author(s):  
Alexandre Perdigão ◽  
Cyntia Ludovico Martins ◽  
Luiz Carlos Vieira Junior ◽  
Maria Márcia Pereira Sartori ◽  
Maria Betânia Niehues ◽  
...  

Abstract: The objective of this work was to evaluate the potential of the stable isotope technique to characterize beef cattle production systems in tropical conditions. For this, carbon and nitrogen stable isotopes were identified in non-defatted and defatted bovine muscles. A total of 45 cattle were evaluated in three production systems: pasture, conventional feedlot, and young beef bull feedlot (n = 15 per system). Samples from the Trapezius cervicis, Longissimus dorsi, and Semitendinosus muscles were collected to determine the isotopic composition of δ13C and δ15N. The isotopic data of the δ13C and δ15N of non-defatted and defatted muscles were subjected to the principal component analysis (PCA) and to the discriminant analysis (DA). The PCA allowed separating the three production systems based on the results obtained for the non-defatted and defatted muscles. A correct global classification rate of 100% and a cross-validation rate of 100% were obtained with the DA. The carbon and nitrogen isotopic ratio of non-defatted and defatted muscles allows for the precise identification of beef cattle production systems in tropical conditions.


1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.


Sign in / Sign up

Export Citation Format

Share Document