scholarly journals Photo-acoustic properties of nanoTiO2:Er

2016 ◽  
Vol 5 (4) ◽  
pp. 196
Author(s):  
R. Palomino-Merino ◽  
R. Lozada-Morales ◽  
J. Martínez-Juárez ◽  
G. Juárez-Díaz ◽  
J. Carmona-Rodriguez ◽  
...  

Nanocrystalline Er-doped TiO2 was prepared by sol-gel at room temperature. X-ray diffraction, photoacoustic spectroscopy (optical absorption), transmission electron microscopy (TEM), and electron dispersion microscopy (EDS) were carried out on both as-prepared and thermally-annealed (air at 700 ºC) samples, revealing the anatase crystalline phase of TiO2. The samples exhibit an average grain size from 38 to 5.1 nm, as the nominal concentration of Er varies from 0 % to 7 %. The photoacoustic spectra evidence the absorption edge at 300 nm attributed to TiO2, as well as several electronic transitions which are atomic energy absorption-line levels characteristics of Er.

2001 ◽  
Vol 704 ◽  
Author(s):  
Xiang-Cheng Sun ◽  
N. Nava ◽  
J. Reyes-Gasga

AbstractTwo types of iron (Fe) nanoparticles, carbon-coated Fe nanoparticles (Fe(C)) and pure α-Fe nanoparticles that coated with oxide layers (Fe(O)), have been successfully synthesized using modified graphite arc-discharge method. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HREM) and electron diffraction (SAED) analysis have been used to characterize these distinct structural morphologies. It is indicated that those two Fe nanoparticles have an average grain size of 15-20nm. The presence of carbon encapsulated α-Fe, γ-Fe and Fe3C phases are clearly identified by X-ray diffraction and SAED patterns in those Fe(C) particles. However, the evidence of pure α-Fe nanocrystal coated with oxide layer is also revealed by HR-TEM images and SAED patterns in these Fe(O) particles.Mössbauer spectra and hyperfine magnetic fields at room temperature for the assemblies of Fe(C) and Fe(O) nanoparticles further confirm their distinct nanophases that detected by XRD analysis and HRTEM observation. Specially, the assemblies of Fe(O) nanoparticles exhibit ferromagnetic properties at room temperature due to the stronger interparticle interaction and bigger magnetocrystalline anisotropy effects among these Fe(O) nanoparticles. Moreover, modified superparamagnetic relaxation is observed in the assemblies of Fe(C) nanoparticles, which is attributed to the nanocrystalline nature of the carbon-coated nanoparticles.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yan Xu ◽  
Yantian Liang ◽  
Lijuan Jiang ◽  
Huarui Wu ◽  
Hongzhi Zhao ◽  
...  

Ordered ZnFe2O4nanotube arrays with the average outer diameter of 100 nm were prepared in porous anodic aluminum oxide template using an improved sol-gel approach. The morphology was studied by transmission electron and field emission scanning electron microscope. X-ray diffraction result shows that the nanotubes were polycrystalline in structure. The magnetic properties of the prepared ZnFe2O4nanotubes were also studied. The results show that the sample shows typical superparamagnetism at room temperature and obvious ferromagnetism below blocking temperature.


2013 ◽  
Vol 389 ◽  
pp. 53-56
Author(s):  
Shu Guo ◽  
Sheng Xu Lu ◽  
Hui Ding ◽  
Zai Feng Shi

The mesoporous TiO2 particles was conveniently prepared in a room temperature ionic liquid (RTILs) of 1, 3-di-(3-propionyloxy) imdazolium tetrafluoroborate [DiprCOOBF4 system. The obtained materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorptiondesorption analysis. XRD patterns revealed that only rutile phase is formed in the RTILs. The TEM micrographs as well as N2 adsorptiondesorption measurements show that the prepared products exhibited wormlike pore structures. The FTIR (Fourier Transform Infrared Spectra) demonstrate the carboxylate groups attach via bidentate or bridging coordination to the TiO2 surface.


2012 ◽  
Vol 562-564 ◽  
pp. 255-259
Author(s):  
Zhi Hao Wei ◽  
Min Zhong ◽  
Yin Deng

Iron-doped titania (TiO2) nanocrystalline were prepared by sol-gel method at room temperature. The samples were characterized by using transmission electron microscope, X-ray diffractometer and ultaviolet-visible spectrophotometer. X-ray diffraction shows that iron-doped titania have the titania anatase and brookite structure, and the more iron doped in, the less titania brookite structure. When the doping content of 10at% iron, the titania brookite structure disappear absolutely. Transmission electron microscopy shows that with the increase of iron-doping from 0.00 to 0.25, the average size of the grains decrease from 5.7nm to 4.3nm. And samples have higher crystallinity. Using UV-visible spectrophotometer to measure its photocatalytic properties the results show that it has the highest rate of 60% photocatalytic degradation when it is absorbed in methylorange in two hours. With the increase of iron-doping from 0.00 to 0.25, the more iron doped in, the higher photocatalytic properties.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


2013 ◽  
Vol 634-638 ◽  
pp. 2150-2154 ◽  
Author(s):  
Rita Sundari ◽  
Tang Ing Hua ◽  
M. Rusli Yosfiah

A citric acid anionic surfactant has been applied for nano manganese ferrite (MnFeO3) fabrication using sol gel method. The calcinations have been varied for 300, 600 and 800oC. The UVDR (UV-Vis Diffused Reflectance) analysis shows a high absorptive band gap after 400 nm for the 600oC calcinated MnFeO3. The DTA (Differential Thermal Analysis) profiles exhibit remarkably trapped volatile matters (H2O, CO2, and NO2) in the fabricated MnFeO3 under sol gel heat treatment at 100oC and the peaks disappeared as the calcination increased to 600oC. As the temperature elevated from 100 to 300oC, the absorption peaks of volatile components are disappeared as demonstrated clearly by the FTIR (Fourier Transform Infrared) spectra of the fabricated material, which 3393 cm-1 corresponded to OH group, 1624 cm-1 to CO group, and 1384 cm-1 to NO group. The XRD (X-Ray Diffraction) spectra show clearly the alteration process from amorphous to crystalline structure as the calcinations increased from 300 to 600oC. In addition, the TEM (Transmission Electron Microscope) analysis exhibits parts of the fabricated MnFeO3 found in cubic nano size of 15-40 nm under interested calcinations and the result is in agreement with that obtained by XRD investigation.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


Sign in / Sign up

Export Citation Format

Share Document