scholarly journals Study of mosquito attractants for photo catalytic mosquito trap

2013 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Dewi Tristantini ◽  
Slamet ◽  
Angela Jessica Stephanie

Photo catalytic mosquito trap is made of TiO2-Activated Carbon (AC) with a certain composition of AC. Research concerns on the heat spectrum which is produced by combination process of existing CO2 and humid air. The purpose of performance testing is to observe capability of this device in trapping mosquitoes related to the air temperature profile for heat spectrum is play important role for attracting mosquitoes. Result shows photo catalytic mosquito trap is more effective than devices which only consist of UV light or stream of CO2 and the humid air. A number of mosquitoes trapped by the photo catalyst coated panel configuration and UV lamps were lit proved far more effective because the heat production from recombination process. A little difference in temperature can be detected by mosquito. Keywords: Photo Catalytic, Mosquito, Recombination.

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1622
Author(s):  
Xiao-Pin Guo ◽  
Peng Zang ◽  
Yong-Mei Li ◽  
Dong-Su Bi

2-methylisoborneol (2-MIB) is a common taste and odor compound caused by off-flavor secondary metabolites, which represents one of the greatest challenges for drinking water utilities worldwide. A TiO2-coated activated carbon (TiO2/PAC) has been synthesized using the sol-gel method. A new TiO2/PAC photocatalyst has been successfully employed in photodegradation of 2-MIB under UV light irradiation. In addition, the combined results of XRD, SEM-EDX, FTIR and UV-Vis suggested that the nano-TiO2 had been successfully loaded on the surface of PAC. Experimental results of 2-MIB removal indicated that the adsorption capacities of PAC for 2-MIB were higher than that of TiO2/PAC. However, in the natural organic matter (NOM) bearing water, the removal efficiency of 2-MIB by TiO2/PAC and PAC were 97.8% and 65.4%, respectively, under UV light irradiation. Moreover, it was shown that the presence of NOMs had a distinct effect on the removal of MIB by TiO2/PAC and PAC. In addition, a simplified equivalent background compound (SEBC) model could not only be used to describe the competitive adsorption of MIB and NOM, but also represent the photocatalytic process. In comparison to other related studies, there are a few novel composite photocatalysts that could efficiently and rapidly remove MIB by the combination of adsorption and photocatalysis.


2010 ◽  
Vol 113-116 ◽  
pp. 1870-1873
Author(s):  
Xiao Dong Zhu ◽  
Jun Shen ◽  
Yu Liu

The removal efficiencies of 4 air-cleaning materials on formaldehyde and VOC emissions from particleboards were examined in this paper. The effect of activated carbon and photo catalyst on formaldehyde and VOC emissions removal was notable in short time. The effect of scavenger was obviously on formaldehyde removal for its synthetic mechanism. And the impact of bioenzyme on formaldehyde and VOC emissions from particleboards is dependent on the test conditions and it shows no impact on emissions in this experiment.


1950 ◽  
Vol 40 (3) ◽  
pp. 199-226 ◽  
Author(s):  
E. M. Crook ◽  
D. J. Watson

Continuous records of the temperature of potatoes stored in clamps were made in 1942–3 (one clamp) and in 1943–4 (three clamps). In the first year, the temperatures at various positions in the clamp coverings were also recorded.The temperature at the middle of the potato heap showed a drift with time similar to that of mean air temperature. Deviations of mean air temperature from smooth trend, lasting for about a week, had no effect on the temperature of the potatoes; longerperiod deviations were reflected in the temperature of the potatoes after a lag of about a week. The difference in weekly mean temperature between potatoes and external air averaged about 1–5° C. in 1943–4. In 1942–3 it was greater, increasing to over 20° C. in April, because bacterial rotting of the potatoes following blight infection increased the rate of heat production and caused the clamp to collapse at the end of April.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zatil Amali Che Ramli ◽  
Nilofar Asim ◽  
Wan N. R. W. Isahak ◽  
Zeynab Emdadi ◽  
Norasikin Ahmad-Ludin ◽  
...  

This study involves the investigation of altering the photocatalytic activity of TiO2using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2(179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.


Vestnik MEI ◽  
2021 ◽  
pp. 37-43
Author(s):  
Vasiliy Ya. Gubarev ◽  
◽  
Aleksey G. Arzamastsev ◽  
Aleksey I. Sharapov ◽  
Yuliya O. Moreva ◽  
...  

In the channels of mechanical-draft cooling tower sprinklers, a saturated air flow section may appear under certain initial conditions, the mass transfer intensity in which is limited by the steam content in the saturated air. For correctly calculating the heat and mass transfer processes in the cooling tower channel, it is necessary to have a method for determining the unsaturated air flow section length. Publications devoted to studying water cooling processes in the channels of mechanical-draft cooling tower sprinklers do not contain an assessment of the unsaturated air flow section length. A method for determining the unsaturated humid air flow section length in the mechanical-draft cooling tower sprinkler channels is proposed, which is based on the well-known criterion equations for calculating the heat transfer and mass transfer coefficients. The effect the initial air parameters have on the unsaturated air section length is studied, and graphic dependences of the unsaturated air section length are drawn up for each of the analyzed parameters. It is shown that the unsaturated humid air flow section length increases with increasing the initial air temperature. It is also found that the unsaturated air flow section length decreases with a growth in the relative air humidity. An increase in the air flow rate with a constant water flow rate leads to an increase in the unsaturated air flow section length. For the considered sprinkler channel, the saturated air region exists at an air temperature of 15°C and below, and for air temperatures above 25°C there is no saturated air flow section. It is shown that the conclusions drawn about the effect the initial air parameters have on the relative change in the unsaturated air flow section length are valid for channels of various shapes and geometric sizes. The proposed methodology and the results obtained can be used in designing mechanical-draft cooling towers and estimating their efficiency.


Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Ni Putu Diantariani ◽  
Iryanti Eka Suprihatin ◽  
Ida Ayu Gede Widihati

Research on  photodegradation of textile dyes  of methylene blue (MB) and congo red (CR) using ZnO-Activated Carbon composite and ultraviolet (UV) light has been done. This research included synthesis zinc oxide (ZnO), synthesis ZnO-Activated Carbon, and the application of composite to degrade textile dyes of MB and CR. In this research studied the effect of pH, concentration and time of UV radiation  towards photodegradation percentages  of dyes. Then it determined the rate and the effectivity of photodegradation of MB and CR dyes using ZnO-Activated Carbon composite. The result showed that  photodegradation of MB reach optimal condition at pH 11 with radiation time 4 hour, whereas CR is at pH 5 with the same radiation time. The more initial concentration of MB and CR applicated, the lower of photodegradation percentages. Constanta of photodegradation rate of MB and CR dyes using ZnO-Activated Carbon composite are 0.8316 and 1.4938 hour-1 respectively. ZnO-Activated Carbon composite as a photocatalyst can degrade effectively MB and CR dyes with photodegradation percentages of 99.40±0.23 % and 99.61±0.24% respectively.


2020 ◽  
Vol 250 ◽  
pp. 117112 ◽  
Author(s):  
Danilo H.S. Santos ◽  
José L.S. Duarte ◽  
Josealdo Tonholo ◽  
Lucas Meili ◽  
Carmem L.P.S. Zanta

Sign in / Sign up

Export Citation Format

Share Document