scholarly journals Development of the mathematical model for the process of oil raw materials pressing

2018 ◽  
Vol 7 (2.13) ◽  
pp. 145
Author(s):  
Ainura Kairbayeva ◽  
Vitalii Vasilenko ◽  
Seit Dzhinguilbayev ◽  
Lyazzat Baibolova ◽  
Larisa Frolova

The mathematical model for the process of oily raw materials pressing with single-screw oil press has been developed, which makes it possible to calculate the main design parameters of an oil press for extracting oil from oil crop seeds.This model of pressing describes the process of moving meal in the pressure zone and expression of oil in the pressing cage of the screw press, taking into account the following assumptions: porous skeleton and oil have the same density, they have no chemical interaction, the process of oil filtration occurs under isothermal conditions with laminar conditions of motion.The developed mathematical model corresponds to physical meaning of the occurring phenomena and can be used to analyze the work of active presses, and at the design stage. 

Author(s):  
R. Zinko ◽  
P. Kazan ◽  
D. Khaustov ◽  
O. Bilyk

A small intelligence robot (SSR) is a special military intelligence means. It is used to obtain information about the enemy - the collection of intelligence, the search for targets and target indication, observation of the situation, etc. The use of a small intelligence robot is assumed in various natural and climatic conditions: in temperate terrain, on soils with low bearing capacity, at low temperatures, in the desert, on sandy and marshy soils, on rocky soils, in elevated temperature and dustiness of air, and also in conditions highlands In the article an overview of modern developments of remotely controlled robotic military complexes, principles of their construction and perspective directions of development in the armed forces are reviewed. The issues of robotization of existing weapons and military equipment are considered. Every sample of a SSR used in combat action must possess all combat characteristics at once in an optimal ratio between them, ensuring its maximum effectiveness. Ignoring any of the properties or enhancing one property at the expense of others will not enable the full realization of the small surveillance robot. It is reasonable to select the relevant properties at the design stage, using the possibilities of mathematical modeling. The set of tactical and technical characteristics of the SSR allowed forming this. Its characteristics determine the scope and possibilities of application. The mathematical model of the SSR motion is written in the Matlab Simulink environment. Recorded mathematical model of SSR motion, formed single test cycle and input data allowed to conduct computer simulation of motion in possible conditions of operation of small surveillance robot.The single trial cycle presented contains a set of individual sites and reproduces the testing test cycle of a real polygon. On the basis of the developed tactical and technical characteristics of the SSR, the experimental sample was made. An example of the use of SSR for the intelligence of the settlement and at keeping the node of barriers has been provided. The efficiency of performing intelligence units’ tasks and reducing the risk of human losses are shown.


2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


2001 ◽  
Vol 38 (02) ◽  
pp. 92-94
Author(s):  
Huseyin Yilmaz ◽  
Mesut Giiner

In this study, a formula is presented to estimate cross curves of cargo vessels and to predict statical stability at the preliminary design stage of the vessel. The predictive technique is obtained by regression analysis of systematically varied cargo vessel series data. In order to achieve this procedure, some cargo vessel forms are generated using Series-60. The mathematical model in this predictive technique is constructed as a function of design parameters such as length, beam, depth, draft, and block coefficient. The prediction method developed in this work can also be used to determine the effect of specific hull form parameters and the load conditions on stability of cargo vessels. The present method is applied to a cargo vessel and then the results of the actual ship are compared with those of regression values.


Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrei Vasilevich Malchikov

This chapter describes various designs of multilink mobile robots intended to move inside the confined space of pipelines. The mathematical model that describes robot dynamics and controlled motion, which allows simulating different regimes of robot motion and determining design parameters of the device and its control system, is presented. The chapter contains the results of numerical simulations for different types of worm-like mobile robots. The experimental studies of the in-pipe robots prototypes and their analyses are presented in this chapter.


2020 ◽  
Vol 168 ◽  
pp. 00056
Author(s):  
Vitalii Monastyrskyi ◽  
Serhii Monastyrskyi ◽  
Denis Nomerovskyi ◽  
Borys Mostovyi

To find possible conveyor failures at the design stage means to determine a transverse belt displacement and compare the obtained data with the permissible ones. The dynamic problem of the belt movement on the conveyor has been defined. Resistance and external forces, limits of the belt displacement have been determined. The transverse belt displacement can be described by partial differential equations. To solve the problem, the Fourier transform has been used. Change patterns in the transverse belt conveyor displacement dependent on conveyor’s parameters, type of load, and skewing of the idlers along the conveyor have been obtained. The results agree with experimental data. The method of adaptive control of the transverse belt displacement has been described. The essence of this method is to adapt the model of the moving belt in the conveying trough to changed conditions and to reveal the uncertainty of the control with the known parameters of the mathematical model.


Author(s):  
Jiewei Lin ◽  
Yi Qiu

Lightweight technology is applied in the automobile industry because mass reduction is beneficial in improving fuel efficiency and reducing CO2 emissions. Apart from the car body and the power unit (the two heaviest parts of a vehicle), the driveline also has potential for a reduction in weight. The driveline transfers power to the wheels and plays an important role in the vehicle system. Vibration is induced by the road input and by unbalanced forces transmitted through the driveline to the car body. Mass reduction in the driveline could influence the dynamic behaviour of a vehicle but it is not yet clear how mass reduction affects vibration of the driveline, the vehicle ride and NVH performance — important considerations when designing a lightweight driveline. In the prototype design stage, a mathematical model provides a more flexible and less costly method of optimising the system dynamics. In this paper, a 14 degree-of-freedom mathematical model is developed to study the dynamics of a rear drive unit (RDU). The system consists of a rear differential gearbox, left and right constant velocity joints and driveshafts, a rear sub-frame, and bushings between the RDU and the sub-frame and between the sub-frame and the car body. Excitations from the rear wheels, rear suspensions, and input shaft were considered. The vertical acceleration at the rear sub-frame was calculated and correlated with a calibrated multi-body dynamic model of the vehicle developed in a parallel study. Using a fractional factorial design with the vehicle travelling on a smooth road at various speeds, a sensitivity analysis was carried out with the developed mathematical model to identify the contributions of the mass properties of the RDU and the bushing parameters to the vibration at the centre of gravity (COG) of the rear sub-frame. Results indicate that the effects of design parameters on the rear sub-frame vibration vary according to the vehicle speed. For vibration at the rear sub-frame, the most influential factors are the masses of the rear differential gearbox and the driveshaft, and the stiffness of the front right bushings between the RDU and the sub-frame. The stiffness of the front left bushing between the RDU and the sub-frame also has considerable effect on the subsystem response but only at higher speeds. Reducing the mass of the CV joint is beneficial in decreasing the vertical vibration at the COG of the rear sub-frame, while reductions in masses of the gearbox and the driveshafts tend to slightly increase the vertical vibration at the same location. However, the adverse effect brought by lightweight differential gearbox and driveshafts on vibration is relatively small that may be hardly detected by passengers. The adverse effect (if any) can be compromised by adjusting the stiffness of the front bushings between the gearbox and the sub-frame.


2014 ◽  
Vol 21 (2) ◽  
pp. 3-8
Author(s):  
Jan P. Michalski

Abstract The paper presents a method of choosing the optimal value of the cargo ships deadweight. The method may be useful at the stage of establishing the main owners requirements concerning the ship design parameters as well as for choosing a proper ship for a given transportation task. The deadweight is determined on the basis of a selected economic measure of the transport effectiveness of ship - the Required Freight Rate (RFR). The mathematical model of the problem is of a deterministic character and the simplifying assumptions are justified for ships operating in the liner trade. The assumptions are so selected that solution of the problem is obtained in analytical closed form. The presented method can be useful for application in the pre-investment ships designing parameters simulation or transportation task studies.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-109 ◽  
Author(s):  
R. Agrawal ◽  
G. L. Kinzel ◽  
R. Srinivasan ◽  
K. Ishii

In many mechanical systems, the mathematical model can be characterized by m nonlinear equations in n unknowns. The m equations could be either equality constraints or active inequality constraints in a constrained optimization framework. In either case, the mathematical model consists of (n-m) degrees of freedom, and (n-m) unknowns must be specified before the system can be analyzed. In the past, designers have often fixed the set of (n-m) specification variables and computed the remaining n variables using the n equations. This paper presents constraint management algorithms that give the designer complete freedom in the choice of design specifications. An occurrence matrix is used to store relationships among design parameters and constraints, to identify dependencies among the variables, and to help prevent redundant specification. The interactive design of a torsion bar spring is used to illustrate constraint management concepts.


2022 ◽  
Vol 7 ◽  
pp. 1
Author(s):  
Andrés Vilaboa Díaz ◽  
Pastora M. Bello Bugallo

Buildings are one of the systems that more energy consumed in the European Union. The study of the thermal envelope is interesting in order to reduce the energy losses. For that, a mathematical model able to predict the system response to external temperature variations is developed. With the mathematical model, different thermal envelope elements of a building based on the lag and the cushioning of the resultant wave can be characterized. In addition, it is important to analyse where the insulation is placed, because when the insulation is outside and the thermal mass is inside, the system produces a response with smooth temperature variations than when the insulation is inside. Therefore, placing the outside insulation generates more steady indoor temperatures, increasing the thermal comfort inside the building. To complete the mathematical model that allows predicting the temperature inside a building taking into account the solar inputs and the thermal inertia of the building. This study will help to establish the optimum design parameters in order to build sustainable and comfortable buildings. Furthermore, it will take one step forward in the construction of nearly Zero-Energy Buildings.


2020 ◽  
Vol 17 (1) ◽  
pp. 110-120
Author(s):  
R. V. Yakimushkin

Introduction. The calculation of effective indicators of the vortex ejector used in the diesel air supply system is a pressing task as it allows significantly reducing time for determination of rational design parameters at the design stage. One of the modifications of the particle dynamics method is a promising direction, allowing with high physical adequacy, “from the first principles,” to model aerodynamic processes in vortex devices. Therefore, the purpose of the paper is to develop a mathematical model of a vortex ejector.Materials and methods. The paper discussed a method of the mathematical simulation of ejection and ejection flows in a vortex ejector. The proposed modification of the particle dynamics method allowed describing aerodynamic processes with the help of simple laws of classical dynamics, and modeling them with the help of software of the Delphi 7 System. The author presented differential equations, which were solved by the Runge-Kutt method of the second order. As a result of the solution, the authors determined paths of air elements movement in the vortex ejector, which allowed estimating effective parameters of vortex devices.Results. To study the model, the author developed a program with the possibility to set geometric parameters of the vortex ejector in the interface window and to display the current values of the process parameters.Discussion and conclusions. Proposed mathematical model and computer program make it possible to quantify efficiency of vortex devices at their design stage. The advantage of the proposed mathematical model lies in more accurate calculation of vortex flow parameters from the vortex ejector design and physical properties of ejecting and ejecting flows.Financial transparency: the author has no financial interest in the presented materials or methods. There is no conflict of interest.


Sign in / Sign up

Export Citation Format

Share Document