scholarly journals Parallel framework based gene signature-hierarchical random forest cluster for predicting human diseases

2018 ◽  
Vol 7 (2) ◽  
pp. 12
Author(s):  
N K Sakthivel ◽  
N P Gopalan ◽  
S Subasree

Gene is not responsible for many Human Diseases and instead, diseases occur by different or group of genomes interacting together and cause diseases. Hence it is need to analyse and associate the complete genome sequences to understand or predict various possible human diseases. This research work focused i. Hierarchical-Random Forest based Clustering (HRF-Cluster), ii. Genetic Algorithm-Gene Associa-tion Classifier (GA-GA) and iii. Weighted Common Neighbor Classifier (wCN). These Classifiers were implemented and studied thor-oughly in terms of Prediction Accuracy, Memory Utilization, Memory Usage and Processing Time. To improve the performances of the Gene Classifiers / Predictors further, this research work was proposed and implemented Gene Signature based HRF Cluster, G-HR. Re-sults show that that the performances of the proposed Classifier G-HR is outperforming as compared with the identified three Classifiers in terms of Disease Pattern Prediction, Processing Time, Memory Usage and Classification Accuracy. To improve the performance of the system further in term of Processing Time, the proposed model G-HR is implemented under Parallel Framework and evaluated. That is the model is tested with Two, Four, Eight and Sixteen Parallel Processors and from the results, it is established that the Processing Time de-creases considerably which will improve the performance of the Proposed Model. 

2018 ◽  
Vol 7 (2) ◽  
pp. 7 ◽  
Author(s):  
S Subasree ◽  
N P Gopalan ◽  
N K Sakthivel

Microarray based Cancer Pattern Classification is one of the popular techniques in Bioinformatics Research. This Research Work is noticed that for studying the expression levels through the Gene Expression profiling experiments, thousands of Genes have to be simultaneously studied to understand the patterns of the Gene Expression or Cancer Pattern. This research work proposed an efficient Cancer Pattern Clas-sifier called An Enhanced Multi-Objective Pswarm (EMOPS) and it is studied thoroughly in terms of Memory Utilization, Execution Time (Processing Time), Sensitivity, Specificity, Classification Accuracy and FScore. The results were compared with the recently proposed classifiers namely Hybrid Ant Bee Algorithm (HABA), Kernelized Fuzzy Rough Set Based Semi Supervised Support Vector Machine (KFRS-S3VM) and Multi-objective Particle Swarm Optimization (MPSO). For analyzing the performances of the proposed model, this work considered a few cancer patterns namely Bladder, Breast, Colon, Endometrial, Kidney, Leukemia, Lung, Melanoma, Mom-Hodgkin, Pancreatic, Prostate and Thyroid. From our experimental results, it was noticed that the proposed model outperforms the identified three classifiers in terms of Memory Utilization, Execution Time (Processing Time), Sensitivity, Specificity, Classification Accuracy and FScore. To improve the performance of the system further in term of Processing Time, the proposed model Enhanced Multi-Objective Pswarm (EMOPS) is implemented under Parallel Framework and evaluated. That is the model is tested with Two, Four, Eight and Sixteen Parallel Processors and from the results, it is established that the Processing Time decreases considerably which will improve the performance of the Proposed Model.


2020 ◽  
Author(s):  
Anurag Sohane ◽  
Ravinder Agarwal

Abstract Various simulation type tools and conventional algorithms are being used to determine knee muscle forces of human during dynamic movement. These all may be good for clinical uses, but have some drawbacks, such as higher computational times, muscle redundancy and less cost-effective solution. Recently, there has been an interest to develop supervised learning-based prediction model for the computationally demanding process. The present research work is used to develop a cost-effective and efficient machine learning (ML) based models to predict knee muscle force for clinical interventions for the given input parameter like height, mass and angle. A dataset of 500 human musculoskeletal, have been trained and tested using four different ML models to predict knee muscle force. This dataset has obtained from anybody modeling software using AnyPyTools, where human musculoskeletal has been utilized to perform squatting movement during inverse dynamic analysis. The result based on the datasets predicts that the random forest ML model outperforms than the other selected models: neural network, generalized linear model, decision tree in terms of mean square error (MSE), coefficient of determination (R2), and Correlation (r). The MSE of predicted vs actual muscle forces obtained from the random forest model for Biceps Femoris, Rectus Femoris, Vastus Medialis, Vastus Lateralis are 19.92, 9.06, 5.97, 5.46, Correlation are 0.94, 0.92, 0.92, 0.94 and R2 are 0.88, 0.84, 0.84 and 0.89 for the test dataset, respectively.


2021 ◽  
Vol 15 (1) ◽  
pp. 151-160
Author(s):  
Hemant P. Kasturiwale ◽  
Sujata N. Kale

The Autonomous Nervous System (ANS) controls the nervous system and Heart Rate Variability (HRV) can be used as a diagnostic tool to diagnose heart defects. HRV can be classified into linear and nonlinear HRV indices which are used mostly to measure the efficiency of the model. For prediction of cardiac diseases, the selection and extraction features of machine learning model are effective. The available model used till date is based on HRV indices to predict the cardiac diseases accurately. The model could hardly throw light on specifics of indices, selection process and stability of the model. The proposed model is developed considering all facet electrocardiogram amplitude (ECG), frequency components, sampling frequency, extraction methods and acquisition techniques. The machine learning based model and its performance shall be tested using the standard BioSignal method, both on the data available and on the data obtained by the author. This is unique model developed by considering the vast number of mixtures sets and more than four complex cardiac classes. The statistical analysis is performed on a variety of databases such as MIT/BIH Normal Sinus Rhythm (NSR), MIT/BIH Arrhythmia (AR) and MIT/BIH Atrial Fibrillation (AF) and Peripheral Pule Analyser using feature compatibility techniques. The classifiers are trained for prediction with approximately 40000 sets of parameters. The proposed model reaches an average accuracy of 97.87 percent and is sensitive and précised. The best features are chosen from the different HRV features that will be used for classification. The present model was checked under all possible subject scenarios, such as the raw database and the non-ECG signal. In this sense, robustness is defined not only by the specificity parameter, but also by other measuring output parameters. Support Vector Machine (SVM), K-nearest Neighbour (KNN), Ensemble Adaboost (EAB) with Random Forest (RF) are tested in a 5% higher precision band and a lower band configuration. The Random Forest has produced better results, and its robustness has been established.


Author(s):  
Tarik Chafiq ◽  
Mohammed Ouadoud ◽  
Hassane Jarar Oulidi ◽  
Ahmed Fekri

The aim of this research work is to ensure the integrity and correction of the geotechnical database which contains anomalies. These anomalies occurred mainly in the phase of inputting and/or transferring of data. The algorithm created in the framework of this paper was tested on a dataset of 70 core drillings. In fact, it is based on a multi-criteria analysis qualifying the geotechnical data integrity using the sequential approach. The implementation of this algorithm has given a relevant set of values in terms of output; which will minimalize processing time and manual verification. The application of the methodology used in this paper could be useful to define the type of foundation adapted to the nature of the subsoil, and thus, foresee the adequate budget.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Junfei Chen ◽  
Ming Li ◽  
Weiguang Wang

Drought is part of natural climate variability and ranks the first natural disaster in the world. Drought forecasting plays an important role in mitigating impacts on agriculture and water resources. In this study, a drought forecast model based on the random forest method is proposed to predict the time series of monthly standardized precipitation index (SPI). We demonstrate model application by four stations in the Haihe river basin, China. The random-forest- (RF-) based forecast model has consistently shown better predictive skills than the ARIMA model for both long and short drought forecasting. The confidence intervals derived from the proposed model generally have good coverage, but still tend to be conservative to predict some extreme drought events.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


2021 ◽  
Vol 7 (3) ◽  
pp. 22-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

The images captured through a camera usually belong to over or under exposed conditions. The reason may be inappropriate lighting conditions or camera resolution. Hence, it is of utmost importance to have a few enhancement techniques that could make these artefacts look better. Hence, the primary objective pertaining to the adjustment and enhancement techniques is to enhance the characteristics of an image. The initial numeric values related to an image get distorted when an image is enhanced. Therefore, enhancement techniques should be designed in such a way that the image quality isn’t compromised. This research work is focused on proposed a network design for deep convolution neural networks for application of super resolution techniques. To improve the complexity of existing techniques this work is intended towards network designs, different filter size and CNN architecture. The CNN model is most effective model for detection and segmentation in image. This model will improve the efficiency of medical image reconstruction from LR to HR. The proposed model showed its efficiency not only PET medical images but also on retinal database and achieved advance results as compared to existing works.


2020 ◽  
Vol 8 (5) ◽  
pp. 3792-3797

Smartphone plays a key role in integrating the entire world into a small hand. This feature made these smartphones as another human organ of many people. One of the main feature in every smart phone is GPS which used to travel new places, to locate and find optimized way to reach their destination. As we aware GPS is an outdoor application, GPS location is not accurate in indoor and small scale areas. This leads to an advanced research to improve the accuracy in GPS positing for the benefit of indoor applications. This research proposes a new iBeacons based Improved Indoor Positioning System for indoor positing application using Bluetooth low energy (BLE) beacons. This model helps the mobile application to find the exact location at micro-level scale. The objective of this research work is to design a potable indoor positing system (IPS) for indoor applications with at least 100m accuracy with in the inbuilt energy resource limitations. The proposed model has been built and verified in all the aspects. The location accuracy and energy efficiency of the proposed model is compared and found better than the existing models


2018 ◽  
Vol 45 (11) ◽  
pp. 958-972 ◽  
Author(s):  
Ashraf Salem ◽  
Osama Moselhi

Continuous monitoring of productivity and assessment of its variations are crucial processes that significantly contribute to success of earthmoving projects. Numerous factors may lead to productivity variations. However, these factors are subjectively identified using manual knowledge-based expert judgment. Such manual recognition process is not only subject to errors but also time-consuming. There is a lack of research work that focuses on near real-time assessment of productivity variation and its effect on cost, schedule and effective utilization of resources in earthmoving projects. This paper presents a customized multi-source automated data acquisition model that acquires data from a variety of wireless sensing technologies. The acquired multi-sensor data are transmitted to a central MySQL database. Then a newly developed data fusion algorithm is applied for truck state recognition, and hence the duration of each earthmoving state. Multi-sensor data fusion facilitates measurement of actual productivity, and consequently the assessment of productivity ratios that support continuous monitoring of productivity variation in earthmoving operations. The developed tracking and monitoring model generates an early warning that supports proactive decisions to avoid schedule delays, cost overruns, and inefficient depletion of resources. A case study is used to reveal the applicability of the proposed model in monitoring and assessing actual productivity and its deviations from planned productivity. Finally, results are discussed and conclusions are drawn highlighting the features of the proposed model.


2017 ◽  
Author(s):  
Vinicius Da S. Segalin ◽  
Carina F. Dorneles ◽  
Mario A. R. Dantas

AA well-known challenge with long running time queries in database environments is how much time a query will take to execute. This prediction is relevant for several reasons. For instance, by knowing that a query will take longer to execute than desired, one resource reservation mechanism can be performed, which means reserving more resources in order to execute this query in a shorter time in a future request. In this research work, it is presented a proposal in which the use of an advance reservation mechanism in a cloud database environment, considering machine learning techniques, provides resource recommendation. The proposed model is presented, in addition to some experiments that evaluate benefits and the efficiency of this enhanced proposal.


Sign in / Sign up

Export Citation Format

Share Document