Knee Muscle Force Estimating Model Using Machine Learning Approach

2020 ◽  
Author(s):  
Anurag Sohane ◽  
Ravinder Agarwal

Abstract Various simulation type tools and conventional algorithms are being used to determine knee muscle forces of human during dynamic movement. These all may be good for clinical uses, but have some drawbacks, such as higher computational times, muscle redundancy and less cost-effective solution. Recently, there has been an interest to develop supervised learning-based prediction model for the computationally demanding process. The present research work is used to develop a cost-effective and efficient machine learning (ML) based models to predict knee muscle force for clinical interventions for the given input parameter like height, mass and angle. A dataset of 500 human musculoskeletal, have been trained and tested using four different ML models to predict knee muscle force. This dataset has obtained from anybody modeling software using AnyPyTools, where human musculoskeletal has been utilized to perform squatting movement during inverse dynamic analysis. The result based on the datasets predicts that the random forest ML model outperforms than the other selected models: neural network, generalized linear model, decision tree in terms of mean square error (MSE), coefficient of determination (R2), and Correlation (r). The MSE of predicted vs actual muscle forces obtained from the random forest model for Biceps Femoris, Rectus Femoris, Vastus Medialis, Vastus Lateralis are 19.92, 9.06, 5.97, 5.46, Correlation are 0.94, 0.92, 0.92, 0.94 and R2 are 0.88, 0.84, 0.84 and 0.89 for the test dataset, respectively.

Author(s):  
K. Alpan ◽  
B. Sekeroglu

Abstract. Air pollution, which is one of the biggest problems created by the developing world, reaches severe levels, especially in urban areas. Weather stations established at certain points in countries regularly obtain data and inform people about air quality. In Smart City applications, it is aimed to perform this process with higher speed and accuracy by collecting data with thousands of sensors based on the Internet of Things. At this stage, artificial intelligence and machine learning plays a vital role in analyzing the data to be obtained. In this study, six pollutant concentrations; particulate matters (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), Ozone (O3), and carbon monoxide (CO), were predicted using three basic machine learning algorithms, namely, random forest, decision tree and support vector regression, by considering only meteorological data. Experiments on two different datasets showed that the random forest has a high prediction capacity (R2: 0.74–0.86), and high-accuracy predictions can be performed on pollutant concentrations using only meteorological data. This and further studies based on meteorological data would help to reduce the number of devices in Smart City applications and will make it more cost-effective.


2021 ◽  
Author(s):  
Hossein Sahour ◽  
Vahid Gholami ◽  
Javad Torkman ◽  
Mehdi Vazifedan ◽  
Sirwe Saeedi

Abstract Monitoring temporal variation of streamflow is necessary for many water resources management plans, yet, such practices are constrained by the absence or paucity of data in many rivers around the world. Using a permanent river in the north of Iran as a test site, a machine learning framework was proposed to model the streamflow data in the three periods of growing seasons based on tree-rings and vessel features of the Zelkova carpinifolia species. First, full-disc samples were taken from 30 trees near the river, and the samples went through preprocessing, cross-dating, standardization, and time series analysis. Two machine learning algorithms, namely random forest (RF) and extreme gradient boosting (XGB), were used to model the relationships between dendrochronology variables (tree-rings and vessel features in the three periods of growing seasons) and the corresponding streamflow rates. The performance of each model was evaluated using statistical coefficients (coefficient of determination (R-squared), Nash-Sutcliffe efficiency (NSE), and root-mean-square error (NRMSE)). Findings demonstrate that consideration should be given to the XGB model in streamflow modeling given its apparent enhanced performance (R-squared: 0.87; NSE: 0.81; and NRMSE: 0.43) over the RF model (R-squared: 0.82; NSE: 0.71; and NRMSE: 0.52). Further, the results showed that the models perform better in modeling the normal and low flows compared to extremely high flows. Finally, the tested models were used to reconstruct the temporal streamflow during the past decades (1970–1981).


2020 ◽  
Vol 9 (2) ◽  
pp. 1049-1054

In this paper, we have tried to predict flight delays using different machine learning and deep learning techniques. By using such a model it can be easier to predict whether the flight will be delayed or not. Factors like ‘WeatherDelay’, ‘NASDelay’, ‘Destination’, ‘Origin’ play a vital role in this model. Using machine learning algorithms like Random Forest, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), the f1-score, precision, recall, support and accuracy have been predicted. To add to the model, Long Short-Term Memory (LSTM) RNN architecture has also been employed. In the paper, the dataset from Bureau of Transportation Statistics (BTS) of the ‘Pittsburgh’ is being used. The results computed from the above mentioned algorithms have been compared. Further, the results were visualized for various airlines to find maximum delay and AUC-ROC curve has been plotted for Random Forest Algorithm. The aim of our research work is to predict the delay so as to minimize loses and increase customer satisfaction.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin Emil Dumitrescu

Abstract Engine calibration requires detailed feedback information that can reflect the combustion process as the optimized objective. Indicated mean effective pressure (IMEP) is such an indicator describing an engine’s capacity to do work under different combinations of control variables. In this context, it is of interest to find cost-effective solutions that will reduce the number of experimental tests. This paper proposes a random forest machine learning model as a cost-effective tool for optimizing engine performance. Specifically, the model estimated IMEP for a natural gas spark ignited engine obtained from a converted diesel engine. The goal was to develop an economical and robust tool that can help reduce the large number of experiments usually required throughout the design and development of internal combustion engines. The data used for building such correlative model came from engine experiments that varied the spark advance, fuel-air ratio, and engine speed. The inlet conditions and the coolant/oil temperature were maintained constant. As a result, the model inputs were the key engine operation variables that affect engine performance. The trained model was shown to be able to predict the combustion-related feedback information with good accuracy (R2 ≈ 0.9 and MSE ≈ 0). In addition, the model accurately reproduced the effect of control variables on IMEP, which would help narrow the choice of operating conditions for future designs of experiment. Overall, the machine learning approach presented here can provide new chances for cost-efficient engine analysis and diagnostics work.


2021 ◽  
Author(s):  
Stephan Slot Lorenzen ◽  
Mads Nielsen ◽  
Espen Jimenez-Solem ◽  
Tonny Studsgaard Petersen ◽  
Anders Perner ◽  
...  

ABSTRACT Importance: The COVID-19 pandemic has put massive strains on hospitals, and tools to guide hospital planners in resource allocation during the ebbs and flows of the pandemic are urgently needed. Objective: We investigate whether Machine Learning (ML) can be used for predictions of intensive care requirements 5 and 10 days into the future. Design: Retrospective design where health Records from 34,012 SARS-CoV-2 positive patients was extracted. Random Forest (RF) models were trained to predict risk of ICU admission and use of mechanical ventilation after n days (n = 5, 10). Setting: Two Danish regions, encompassing approx. 2.5 million citizens. Participants: All patients from the bi-regional area with a registered positive SARS-CoV-2 test from March 2020 to January 2021. Main outcomes: Prediction of future 5- and 10-day requirements of ICU admission and ventilator use. Mortality was also predicted. Results. Models predicted 5-day risk of ICU admission with an area under the receiver operator characteristic curve (ROC-AUC) of 0.986 and 5-day risk of use of ventilation with an ROC-AUC of 0.995. The corresponding 5-day forecasting models predicted the needed ICU capacity with a coefficient of determination (R2) of 0.930 and use of ventilation with an R2 of 0.934. Performance was comparable but slightly reduced for 10-day forecasting models. Conclusions. Random Forest-based modelling can be used for accurate 5- and 10-day forecasting predictions of ICU resource requirements.


2021 ◽  
Vol 4 (2(112)) ◽  
pp. 58-72
Author(s):  
Chingiz Kenshimov ◽  
Zholdas Buribayev ◽  
Yedilkhan Amirgaliyev ◽  
Aisulyu Ataniyazova ◽  
Askhat Aitimov

In the course of our research work, the American, Russian and Turkish sign languages were analyzed. The program of recognition of the Kazakh dactylic sign language with the use of machine learning methods is implemented. A dataset of 5000 images was formed for each gesture, gesture recognition algorithms were applied, such as Random Forest, Support Vector Machine, Extreme Gradient Boosting, while two data types were combined into one database, which caused a change in the architecture of the system as a whole. The quality of the algorithms was also evaluated. The research work was carried out due to the fact that scientific work in the field of developing a system for recognizing the Kazakh language of sign dactyls is currently insufficient for a complete representation of the language. There are specific letters in the Kazakh language, because of the peculiarities of the spelling of the language, problems arise when developing recognition systems for the Kazakh sign language. The results of the work showed that the Support Vector Machine and Extreme Gradient Boosting algorithms are superior in real-time performance, but the Random Forest algorithm has high recognition accuracy. As a result, the accuracy of the classification algorithms was 98.86 % for Random Forest, 98.68 % for Support Vector Machine and 98.54 % for Extreme Gradient Boosting. Also, the evaluation of the quality of the work of classical algorithms has high indicators. The practical significance of this work lies in the fact that scientific research in the field of gesture recognition with the updated alphabet of the Kazakh language has not yet been conducted and the results of this work can be used by other researchers to conduct further research related to the recognition of the Kazakh dactyl sign language, as well as by researchers, engaged in the development of the international sign language


2021 ◽  
Vol 6 (3) ◽  
pp. 063-068
Author(s):  
Barida Baah ◽  
Onate Egerton Taylor ◽  
Chioma Lizzy Nwagbo

The problems of privacy and security is becoming a major challenge when it comes to the distributed systems, federated machine learning system especially when data are been transmitted or learned on a network , this necessitated the reasons for this research work which is all about wireless federated machine learning process using a Raspberry Pi. The Raspberry Pi 4 is a single hardware board with built in Linux operating system. We used data set of names from nine (9) different languages and then develop a training model using recurrent neural network to train this names compare to the names in the existing language like French, Scottish to predict if the names are from any of this language, this is done wirelessly with the Wi-Fi network in a federated machine learning environment for experimental setup with PySft’s that is installed in the python environment. The system was able to predict that name from which the language it originate from, the methodology that is implore in the research work is the Rapid Application Development (RAD). The benefits of this system are to ensure privacy, reduces the computing power, ensure real time learning and most importantly it is cost effective.


2021 ◽  
Author(s):  
V. Govindaraj ◽  
B. Arunadevi

Abstract Nowdays, machine learning (ML) algorithms are receiving massive attention in most of the engineering application since it has capability in complex systems modelling using historical data. Estimation of power for CMOS VLSI circuit using various circuit attributes is proposed using passive machine learning based technique. The proposed method uses supervised learning method which provides a fast and accurate estimation of power without affecting the accuracy of the system. Power estimation using random forest algorithm is relatively new. Accurate estimation of power of CMOS VLSI circuits is estimated by using random forest model which is optimized and tuned by using multi-objective NSGA-II algorithm. It is inferred from the experimental results testing error varies from 1.4 percent to 6.8 percent and in terms of and Mean Square Error is 1.46e-06 in random forest method when compared to BPNN. Statistical estimation like coefficient of determination (𝑅) and Root Mean Square Error (RMSE) are done and it is proven that random Forest is best choice for power estimation of CMOS VLSI circuits with high coefficient of determination of 0.99938. and low RMSE of 0.000116.


Author(s):  
Sihan Yong ◽  
Zhuoyuan Zheng ◽  
Pingfeng Wang ◽  
Yumeng Li

Abstract The traditional way of designing materials, including experimental measurement and computational simulation, are not efficient. Machine learning is considered a promising solution for material design in the recent years. By observing from previous data, machine learning finds patterns, learns from the patterns and predict the material properties. In this study, machine learning methods are used for discovering new cathode with better properties, includes crystal system learning and the property prediction. K-Folder cross-validation is used for finding the best training data with a limited dataset, nevertheless increasing the percentage of training data would ultimately result in better performance on prediction. It is found that, random forest gives the highest average accuracy in crystal system classification, meanwhile, extra randomized tree algorithm provides a higher averaged coefficient of determination and lower mean squared error in the regression model predicting electrical properties of cathodes. The random forest algorithm is chosen from a wide range of machine learning algorithms with the implementation of Monte Carlo validation. Based on the feature importance evaluation, oxygen contents are found to have the highest effects in determining capacity gravity and volume change in properties prediction.


Author(s):  
Hitarth Deepak Shah ◽  
Chintan M. Bhatt ◽  
Shubham Mitul Patel ◽  
Jayshil Bhavin Khajanchi ◽  
Jaimin Narendrakumar Makwana

India has globally been the largest milk-producing country in the world for two decades. About 400 million litres of milk is produced every day. It is the responsibility of a dairy sector to look after the farmers by providing them with various services for their livelihood. The growing financial capital of the dairy industry has enticed various fraudulent behaviour. The majority of suspicious activities are seen during the collection at local collection centres, fake farmer entries, tempered quantity and fat entries manually, and adulteration are the profound malpractices exercised by farmers. So, in this research work, the authors present a profound study on the most popular machine learning methods applied to the problems of farmer churn prediction and fraud detection in the dairies. They applied a plethora of machine learning algorithms to get accurate results for churn and fraud detection. XGBoost Classifier was the best for churn prediction with 93% accuracy, while random forest classifier turns out to be effective for fraud detection with 94% accuracy.


Sign in / Sign up

Export Citation Format

Share Document