scholarly journals Grounded Impedance Simulator Topologies Employing Minimum Passive Elements

2018 ◽  
Vol 7 (2.28) ◽  
pp. 1 ◽  
Author(s):  
Mohammad Faseehuddin ◽  
Jahariah Sampe ◽  
Sawal Hamid Md Ali

In this research three new grounded inductance simulators (GIS) are proposed. In addition, frequency dependent negative resistor (FDNR) and grounded capacitor (GC) simulators are also developed. The voltage differencing current conveyor (VDCC) is utilized in the design. All the developed simulator circuits need a single active block and only two grounded passive components. All the designed simulator circuits are perfectly tunable and did not suffer from passive component matching constraints. To demonstrate the performance of the inductor, FDNR and GC circuits they are employed in designing  current mode parallel RLC multifunction filter, low pass third order Butterworth filter and RLC resonance circuits. The VDCC is designed in 0.18μm CMOS technology parameters from TSMC and simulated in P-Spice software to prove the theoretical predictions. 

2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Firat Yucel ◽  
Erkan Yuce

A new voltage-mode (VM) multifunctional filter using only two voltage followers (VFs), two resistors and two capacitors is proposed. The proposed filter with two inputs and two outputs can provide low-pass (LP) and high-pass (HP) responses. It does not need any critical passive component matching constraints. Additionally, it has low output impedances, low power dissipation and adequately low THD values. However, it does not have high input impedances; accordingly, it requires an extra VF to obtain high input impedance. A number of time domain and frequency domain simulations and experimental tests are performed to verify the claimed theory.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Punnavich Phatsornsiri ◽  
Montree Kumngern ◽  
Panit Lamun

This paper presents a new voltage-mode (VM) universal biquadratic filter using differential difference current conveyor transconductance amplifier (DDCCTA) as an active element. The circuit employs one DDCCTA, two floating resistors and two floating capacitors which can realize five biquadratic filters, namely low-pass (LP), band-pass (BP), band-stop (BS), high-pass (HP) and all-pass (AP) into one single topology. For realizing these filtering functions, passive component-matching conditions, inverting-type and/or doubling-input signal requirements and changing circuit configuration are absent. The natural angular frequency and quality factor of the filter can be orthogonally controlled deliberately. The VM biquadratic filter using grounded passive components with high-input and low-output impedances can be obtained by adding an additional DDCCTA or differential difference current conveyor (DDCC). The simulation results with 0.5[Formula: see text][Formula: see text]m CMOS process from MIETEC are given to confirm the theoretical predictions and the experimental results are also included to verify the workability of the proposed structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Supachai Klungtong ◽  
Dusit Thanapatay ◽  
Winai Jaikla

This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP), band-reject (BR), low-pass (LP), high-pass (HP), and all-pass (AP) functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Erkan Yuce ◽  
Shahram Minaei

In this paper, a new first-order current-mode (CM) universal filter employing two dual output second-generation current conveyors (DO-CCIIs), one resistor and a grounded capacitor is proposed. The proposed filter has low input and high output impedances; thus, it can be easily connected with other CM circuits. It can simultaneously realize first-order low-pass (LP) and all-pass (AP) responses and can provide high-pass (HP) response with interconnection of LP and AP responses. It can be tuned electronically by replacing with dual output second-generation current controlled conveyors (DO-CCCIIs) instead of DO-CCIIs and removing the resistor. It has only a resistor but no capacitor connected in series to X terminal of DO-CCII; accordingly, it can be operated at high frequencies. Also, it does not need any critical passive component matching conditions and cancellation constraints. A number of simulation results based on SPICE program are included to exhibit performance, workability and effectiveness of the proposed filter configuration.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Musa Ali Albrni ◽  
◽  
Mohammad Faseehuddin ◽  
Jahariah Sampe ◽  
Sawal Hamid Md Ali ◽  
...  

In this research, voltage differencing buffered amplifier (VDBA) is utilized in designing three novel multi-input single output (MISO) topologies of universal filters. The designed filters employ minimum number of passive components and did not require any passive component matching condition. Two of the designed filters can work in dual mode of operation simultaneously. The designed filters have inbuilt tunability property. The nonideal gain analysis and sensitivity analysis of the filters are also carried out to study the effect of process variations and process spread on the filter responses. The complete layout of the VDBA is designed using 0.18μm Silterra Malaysia process design kit (PDK) in Cadence design software. The parasitic extraction is done using Mentor graphics Calibre tool. The postlayout simulations bear close resemblance with the theoretical predictions.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950181 ◽  
Author(s):  
Tajinder Singh Arora ◽  
Bhargavi Rohil ◽  
Soumya Gupta

This paper proposes a current mode universal filter circuit, employing two active elements along with four grounded passive components only. The derived circuit realizes all five filtering responses, i.e., low pass (LP), band pass (BP), high pass (HP), band reject (BR) and all pass (AP), simultaneously from high-impedance ports along with the input being fed to low-impedance port, thus making it a fully cascadable filter. In addition, the designed circuit exhibits independent tunability of its quality factor. With the idea of making the proposed filter fully integrable, a resistor-less approach of the configuration has also been discussed. By making slight modifications in the filter configuration, a current mode single-resistance-controlled quadrature oscillator circuit has also been derived. The ideal, nonideal, sensitivity and parasitic analysis have been conducted for the designed configurations. The functionality of the proposed structures is verified by PSPICE simulations using 0.18[Formula: see text][Formula: see text]m CMOS technology. The designs have also been verified using PSPICE macro-model of the commercially available IC, i.e., OPA860.


2008 ◽  
Vol 17 (06) ◽  
pp. 1161-1172 ◽  
Author(s):  
HUA-PIN CHEN ◽  
KUO-HSIUNG WU

A new voltage-mode biquad with four inputs and four outputs using only two differential difference current conveyors (DDCCs), two grounded capacitors, and two resistors is proposed. The proposed circuit can act as a multifunction voltage-mode filter with one or three inputs and four outputs and can perform simultaneous realization of voltage-mode notch, highpass, bandpass, and lowpass filter signals from the four output terminals, respectively, without any component choice conditions. On the other hand, it also can act as a universal voltage-mode filter with four inputs and a single output and can realize five generic voltage-mode filter signals from the same configuration without any component-matching conditions. Finally, to verify our architecture, we have designed this analog filter chip with TSMC 0.35 μm 2P4M CMOS technology. This chip operates to 1.125 MHz and consumes 30.95 mW. The chip area of the analog filter is about 0.822 mm2.


Author(s):  
Manoj Kumar Jain

Some time back, Kircay reported an electronically-tunable current-mode square-root-domain first-order filter capable of realizing low-pass (LP), high-pass (HP) and all-pass (AP) filter functions. When simulated in SPICE, Kircay’s circuit has been found to exhibit DC offsets in case of LP and AP responses and incorrect transient response in case of HP response. In this paper, an improved circuit overcoming these difficulties/deficiencies has been suggested and its workability of the improved circuit as well as its capability in meeting the intended objectives has been demonstrated by SPICE simulation results.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450123 ◽  
Author(s):  
HALIL ALPASLAN ◽  
ERKAN YUCE

In this paper, a new two-input three-output second-order universal filter is proposed. Two multi-output voltage controlled current followers (MO-VCCFs) and two capacitors are used in the proposed filter. The proposed filter does not have external passive resistors. It has high output impedances yielding easy cascadability. It has the property of electronic tunability. It does not need any critical passive component matching conditions. Also, it is composed of only grounded capacitors; accordingly, it is suitable for integration. Theoretical knowledge is supported via SPICE simulations.


Sign in / Sign up

Export Citation Format

Share Document