scholarly journals Seismic Analysis for Multi-Story Building Horizontally Damped Above Basement Level

2018 ◽  
Vol 7 (2.29) ◽  
pp. 955
Author(s):  
Mohammed Ziauddin Patowary ◽  
Abdul Kadir Marsono

Due to the urbanization multi-story building with underground story for parking space and storage are very common in practice. Now a day, seismic energy dissipating devices are being used for various types of structures and located in basements which are difficult to maintain.  The main objective is to evaluate the effectiveness of horizontal dampers in the ground floor level of the multi-story building above basement. Among different types of dampers, visco-elastic [VE] dampers are used for this numerical study. Comparing with other types of passive energy dissipating devices, visco-elastic [VE] dampers are considered most suitable. For the better understanding of the effectiveness of horizontal dampers, stiff foundation system is considered thus soil-structure interaction is omitted. In this numerical study, seismic response of different hypothetical structures analyzed having different underground stories and horizontal dampers only in the ground level. Modeling and analysis of the structures and installation of the dampers are done by using finite element modeling software [ETABS]. Time history analysis was used to simulate the response of the structures. Sabah earthquake [05/June/2015] with the PGA of 0.126g was used for the time history analysis. Different dynamics parameters such as natural time period, displacement, base shear and inter-story drift were evaluated. Changes in the results among the structures demonstrated the efficiency of horizontal dampers. Optimum locations of the horizontal dampers were also revealed in this study in the basis of the analysis results.  

2021 ◽  
Author(s):  
Sinem Tola ◽  
Joaquim Tinoco ◽  
José C. Matos ◽  
Elişan Filiz Piroğlu

<p>Turkey is located on active seismic fault lines. Having this major issue makes the seismic performance analysis a critical step to decide the safety or whether demolishing or reinforcing is more efficient. In this study, a seismic analysis comparison is performed on an existing steel structure via SAP2000 software. The seismic analysis method is Linear Time History Analysis. A comparison of results attained from dynamic analysis is obtained for an existing steel structure serving as a garage in Istanbul, Turkey. The results are demonstrated using graphics where base shear forces as well as lateral displacements obtained for two models are plotted for comparison.</p>


Author(s):  
Harsh Joshi

Abstract: Due to sloping land and high seismically active zones, designing and construction of multistory buildings in hilly regions is always a challenge for structural engineers. This review paper focuses to establish a review study on the Possible Types of building frame configuration in the hilly region and he behavior of Such building frames under seismic loading conditions, and (3) The recent research and developments to make such frames less vulnerable to earthquakes. This paper concludes that the dynamics characteristics of such buildings are significantly different in both horizontal and vertical directions, resulting in the center of mass and center of stiffness having eccentricity at point of action and not vertically aligned for different floors. When such frames are subjected to lateral loads, due to eccentricity it generates torsion in the frame. Most of the studies agree that the buildings resting on slanting ground have higher displacement and base shear compared to buildings resting on plain ground and the shorter column attracts more forces and undergoes damage when subjected to earthquake. Keywords: Building frame configuration, Seismic behavior, Dynamic characteristics, Response spectrum analysis, time history analysis.


Author(s):  
Jong-Sung Kim ◽  
Suk-Hyun Lee ◽  
Hyeong Do Kweon

In this study, effect of analysis variables on structural integrity of nuclear piping under beyond design basis earthquake was investigated via performing dynamic time history seismic analysis. A finite element model of the piping system such as shut-down cooling line was developed combining solid and beam elements. Dynamic time history analysis was performed via finite element elastic plastic stress analysis. Validity of the dynamic time history analysis procedure was verified via comparing with the previous study results. Finally, the effect of analysis variables such as finite element characteristics, transition length between elbow and straight line, fluid effect, etc. was investigated via performing parametric dynamic time history seismic analysis. As a result, it was found that use of the 1st incompatible element is recommended, the transition length is the same as curvature of the elbow, and fluid has to be considered.


2010 ◽  
Vol 163-167 ◽  
pp. 4295-4300
Author(s):  
Feng Miao ◽  
Lei Shi ◽  
Zhe Zhang

Base on the elastic-plastic analytical theory, an elastic-plastic time-history analysis of self-anchored cable-stayed suspension bridge, which engineering background is Dalian Gulf Cross-sea Bridge program, is performed by using general finite element software Midas/Civil. The material nonlinearity of structure is considered with reinforcement concrete fiber model, and distributed hinge type is adopted to simulate for plastic hinge. Compared with the results of an elastic time-history analysis, it is shown that for the structure into the elastic-plastic stage, because of the production of plastic hinge, the input seismic energy is dissipated partially, and the internal forces of structural elements are reduced. The bending moments and axial forces occur mainly in the main tower root. Furthermore, the rotation properties of the plastic hinge causes displacement increasing of certain parts of the structure, which assumes mainly the vertical displacement present on the top of main tower and the main beam. In conclusion, it is proposed that caging devices are set in the design.


2021 ◽  
Vol 309 ◽  
pp. 01136
Author(s):  
Siripuram Vamshisheela ◽  
Atulkumar Manchalwar

In this work the performance of U-Shaped Steel Isolator is evaluated for a 5-story building subjected to seismic and blast vibrations. The structure is analysed using SAP 2000 software and a nonlinear time history analysis is carried out. The effectiveness of using base isolation is studied by comparing the structural responses of the building with isolator and without isolator and noticeable difference was observed. As the U-Shaped isolator absorbs the energy in all directions, it effectively controls the structural responses. In this study, the building is subjected to four different seismic and four different blast induced ground motions. It was observed that by the use of supplementary energy device there is reduction in top story acceleration, base shear and less deformation in the structure. This study concludes that the use of isolator has been effective in minimizing structural responses.


2019 ◽  
Vol 10 (2) ◽  
pp. 166-184
Author(s):  
Johnny Setiawan ◽  
Iswandi Imran

Terdapat cukup banyak perubahan pada SNI 1726-2012, salah satunya adalah adanya persyaratanbatas geser dasar minimum (minimum base shear) yang tidak ada pada peraturan sebelumnya.Metode yang akan dilakukan adalah bangunan gedung dengan klasifikasi ketinggian rendah,sedang dan tinggi akan dianalisis dengan menerapkan geser dasar minimum dan tanpa geser dasarminimum. Analisis yang akan digunakan adalah analisis ragam spektrum respons (ResponsSpectrum Analysis, RSA), analisis respons riwayat waktu (Time History Analysis, THA) dananalisis respons riwayat waktu non linier (Non Linear Time History Analysis, NLTHA). Hasilanalisis menunjukkan bahwa pada peraturan SNI 1726-2012 dengan adanya persyaratan batasangeser dasar minimum dapat menjamin kinerja struktur sesuai dengan yang diharapkan.Kekhawatiran adanya batasan geser dasar minimum pada SNI 1726-2012 akan membuat desainmenjadi tidak ekonomis, ternyata tidak terbukti karena tidak memberikan pengaruh signifikanpada hasil desain, khususnya untuk bangunan dengan kategori ketinggian rendah dan sedang.Untuk bangunan dengan klasifikasi bangunan tinggi, analisis dan desain dengan memperhitungansyarat batasan geser dasar minimum dan tanpa memperhitungkan geser dasar minimum dapatmemberikan hasil desain yang baik, tetapi pengecekan pada Level Kinerja (Performance Level)sesuai dengan story drift menunjukkan bahwa analisis dengan memperhitungkan syarat geser dasarminimum memberikan hasil dengan level kinerja yang cukup baik yaitu Immediate Occupancy(IO) hingga Damage Control (DO), sedangkan tanpa memperhitungkan geser dasar minimummemberikan hasil dengan level kinerja yang kurang baik yaitu Life Safety (LS) hingga StructuralStability (SS). Sedangkan pada level kinerja elemen struktur, analisis tanpa memperhitungkangeser dasar minimum menyebabkan banyak elemen struktur yang berada pada level kinerjaCollapse Prevention (CP).


2015 ◽  
Vol 4 (1) ◽  
pp. 169
Author(s):  
Ehsan Rajaie

In this paper, the dynamic behavior of water storage tanks in investigated. Using time-history analysis based on three major earthquakes, the performance of system is illustrated. Two conditions, first with damper and second with no damper are presented and the relevant results are compared. The main results consist of base shear forces and also maximum target displacements. 


Author(s):  
Tomasz Falborsk ◽  
Natalia Lasowicz

The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.


2018 ◽  
Vol 149 ◽  
pp. 02035
Author(s):  
Oumnia Elmrabet ◽  
Hasnae Boubel ◽  
El Mehdi Echebba ◽  
Mohamed Rougui ◽  
Ouadia Mouhat

The current performance-based seismic assessment procedure can be computationally intensive as it requires many time history analyses (THA) each requiring time intensive post-processing of results. Time history analysis is a part of structural analysis and is the calculation of the response of a structure to any earthquake. It is one of the main processes of structural design in regions where earthquakes are prevalent. The objective of this study is to evaluate the seismic performance of embankment dam located on the Oued RHISS in the Province of AL HOCEIMA using the THA method. To monitor structural behavior, the seismic vulnerability of structure is evaluated under real earthquake records with considering the soil-structure-fluide interaction. In this study, a simple assistant program is developed for implementing earthquake analyses of structure with ANSYS, ground acceleration–time history data are used for seismic analysis and dynamic numerical simulations were conducted to study and identify the total response of the soil-structure system.


Sign in / Sign up

Export Citation Format

Share Document