scholarly journals Spatial Assessment of Selangor, Malaysia Water Treatment Plant Performance Using Chemometric Technique

2018 ◽  
Vol 7 (3.14) ◽  
pp. 139
Author(s):  
H M. Zolkipli ◽  
H Juahir ◽  
G Adiana ◽  
N Zainuddin ◽  
A B. H. M. Maliki ◽  
...  

This study aims to identify the most significant parameters in drinking water quality, spatial disparities of treated water (TW) and performance of water treatment plant (WTP) in Selangor. Physico- chemical (PCPs), Inorganic (IPs), Heavy metal and organic (HMOPs) and pesticide (PPs) were selected as parameters to discriminate the source of WTP pollutant. Chemometric technique such as principle component analysis (PCA), one-way analysis of variance (ANOVA) and discriminant analysis (DA) was applied to validate the performance of water treatment plant. PCA identified the most significant parameters which are highlighted six out of eight parameters for PCPs, six out of twelve parameters for IPs, nine out of sixteen parameters for HMOPs and all seventh parameters for PP. ANOVA for distinguish two categories region in WTP and showed both of PCPs and IPs had significant differences due to their concentration (p < 0.5) and HMOPs suggested fifth of significant differences within regions (p < 0.05). PP doesn’t give any significant differences (p > 0.05). DA was suggested PCPs, IPs and HMOPs in good performance (76.96%, 91.90% and 93.27%) except PP (50.43%). We can conclude that this chemometric technique can expose which area of WTP need to be properly maintains their performance to produce high quality of drinking water.  

RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76922-76932 ◽  
Author(s):  
Bingwei Hou ◽  
Tao Lin ◽  
Wei Chen

Recycling the filter backwash water of a drinking water treatment plant (DWTP) was considered as a feasible method to enhance the efficiencies of pollutant removal and water conservation.


Author(s):  
A. Seliukov ◽  
V. Rakhimov

Приводятся основные результаты технологических изысканий, положенных в основу проекта реконструкции станции очистки подземных вод г. Ноябрьска (Ямало-Ненецкий автономный округ). Станция построена по проекту ЗАО ДАР/ВОДГЕО (Москва) и принята в постоянную эксплуатацию в сентябре 2006 г. На станции используется новая технология, предусматривающая последовательную обработку воды двумя окислителями пероксидом водорода и перманганатом калия с целью очистки от соединений железа и марганца. Недостатки проекта и неполная реализация проектных решений усложняют штатную эксплуатацию станции и затрудняют получение питьевой воды нормативного качества. Установлено, что в подземной воде присутствует сероводород в концентрациях до 0,1 мг/дм3, что требует дополнительного расхода реагентов. Ручное дозирование реагентов приводит к значительным отклонениям от необходимых доз: от 14,5 до 19,1 для пероксида водорода и от 8,5 до 9,1 для перманганата калия. Указано, что применяемые в качестве реагента технические продукты перманганата калия производства КНР создают угрозу увеличения токсичности питьевой воды. Найденное значение величины индекса Ланжелье (индекса насыщения карбонатом кальция) подземной воды (2,35 ед.) позволило сделать вывод о необходимости стабилизационной обработки путем подщелачивания. Выполненные пробные обработки воды пероксидом водорода и перманганатом калия в сочетании с подщелачиванием показали, что такой процесс обеспечивает достижение остаточных концентраций марганца 0,1 мг/дм3 и железа общего 0,10,15 мг/дм3 при отсутствии остаточного сероводорода. Однако для получения воды постоянного нормативного качества необходима высокая точность дозирования реагентов, что может быть достигнуто только путем полной автоматизации процесса. Выполненный на основе технологических изысканий проект реконструкции станции очистки подземных вод г. Ноябрьска позволяет решить существующие проблемы и обеспечить нормативное качество очищенной воды.The main results of technological surveys that form the basis for the project of reconstruction of the ground water treatment plant in Noyabrsk (Yamalo-Nenets Autonomous Okrug) are presented. The plant was built according to the project of DAR/VODGEO CJSC (Moscow) and commissioned in September 2006. The plant uses a new technology that provides for the sequential treatment of water with two oxidizing agents hydrogen peroxide and potassium permanganate to remove iron and manganese compounds. The project shortcomings and incomplete implementation of design solutions complicate the regular operation of the plant and make it difficult to ensure the standard quality of drinking water. It was stated that ground water contained hydrogen sulfide in concentrations up to 0.1 mg/dm3, which required extra consumption of chemicals. Manual dosing of chemicals causes significant deviations from the required doses: from 14.5 to 19.1 for hydrogen peroxide and from 8.5 to 9.1 for potassium permanganate. It is pointed out that crude products of potassium permanganate produced by the P. R. China used as a chemical agent in drinking water supply, pose a threat of increased toxicity of drinking water. The determined value of the Langelier index (index of saturation with calcium carbonate) of ground water (2.35 units) allowed to conclude that stabilization treatment by alkalization is required. The performed test water treatment with hydrogen peroxide and potassium permanganate in combination with alkalization showed that this process provided for achieving the residual concentrations of manganese 0.1 mg/dm3 and total iron 0.10.15 mg/dm3 in the absence of residual hydrogen sulfide. However, to produce water of constant standard quality, high accuracy of chemical dosing is required that can only be provided by completely automated dosing. The project of upgrading the ground water treatment plant in Noyabrsk designed on the basis of technological research, allows to resolve the existing problems and ensure the standard quality of drinking water.


Author(s):  
Ali Abdullah Al Maskari ◽  
Adeel H. Suhail

Developing countries' experience is a huge gap in the coverage of collection-system and domestic wastewater treatment. Wherever the wastewater treatment facilities are available, they are running below the design standards. This leads to the discharge of pollutants into the natural water bodies and creating a negative impact on the environment and human health as well. Odor nuisance has become a major environmental issue worldwide with increasing public demand for better control of odor emissions from the municipal wastewater treatment facilities. Odor get affects the population directly and there is a trend that more and more peoples are becoming less tolerable with more odor emissions. Bad smell is often an indicator of the public potential health risk. Performance assessment of Haya water treatment plant in Manuma Village has been done. The main objective of this study is to assess the performance of the treatment plant with respect to produce high quality of treated water and reduce odor complaints. Influent and effluent samples were collected at critical treatment steps of the plant and analyzed for chemical, physical and microbial parameters. The study will be used to monitor the Manuma wastewater treatment plant and compare its performance to that one that uses the Sequence Batch Reactor (SBR) process. Study shows that process with wet scrubber technology will be the suitable treatment process to create an environment without any health-related issues, and selecting these alternative treatment facilities with the latest technology will lead to creating high-quality of treated water without any odor issues.


2003 ◽  
Vol 1 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Sophie Verhille ◽  
Ron Hofmann ◽  
Christian Chauret ◽  
Robert Andrews

This objective of this study was to explore the practicality of monitoring naturally occurring organisms to predict drinking water treatment plant performance, in this case for the reduction of Cryptosporidium. Surface and ground water from seven drinking water treatment plants across North America that use chlorine dioxide were surveyed for aerobic and anaerobic bacterial spore concentrations. The concentrations of total spores were usually high enough in both raw and treated water to allow 4- to 5-log reductions to be observed across the treatment train by filtering up to 2 l of sample. These results suggested that naturally occurring treatment-resistant spores could be candidates as indicators of treatment performance. However, to be useful as indicators for Cryptosporidium reduction, the organisms would have to exhibit similar resistances to disinfection (chlorine dioxide in this case) in order to be useful. The inactivation kinetics of seven of the most common species were determined, and all were observed to be considerably more susceptible to chlorine dioxide inactivation than Cryptosporidium as reported in the literature. This study therefore did not identify an appropriate ambient microbial indicator for Cryptosporidium control.


1998 ◽  
Vol 37 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Antoine Montiel ◽  
Bénédicte Welté

The renovating of a new water treatment plant in Paris which produces 15% of the capital's drinking water supply is described: an original treatment plant consisting of a preozonation, a flotation with a low level of coagulant coupled with contact coagulation. Coagulation on filter has been tested on a pilot plant. The results are excellent (95 to 99%) and have led to the building of a new water treatment plant with very flexible operating conditions depending on the quality of the water.


2013 ◽  
Vol 8 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Anca Farkas ◽  
Mihail Dragan-Bularda ◽  
Vasile Muntean ◽  
Dorin Ciataras ◽  
Stefan Tigan

AbstractMicrobial biofilms from surfaces in contact with water may play a beneficial role in drinking water treatment as biological filters. However, detrimental effects such as biofouling (i.e., biocorrosion and water quality deterioration) may also occur. In this study microbiological processes and factors influencing the activity of bacteria in biofilms were investigated by conventional cultivation methods. The presence of bacteria belonging to different ecophysiological groups was assessed during drinking water treatment, in biofilms developed on concrete, steel and sand surfaces. Influences of the treatment process, type of immersed material and physico-chemical characteristics of raw/bulk water and biofilms upon the dynamics of bacterial communities were evaluated. Results revealed intense microbial activity in biofilms occurring in the drinking water treatment plant of Cluj. Ammonification, iron reduction and manganese oxidation were found to be the predominant processes. Multiple significant correlations were established between the evolution of biofilm bacteria and the physico-chemical parameters of raw/ bulk water. The type of immersed material proved to have no significant influence upon the evolution of microbial communities, but the treatment stage, suggesting that the processes applied restrict microbial growth not only in bulk fluid but in biofilms, too.


2019 ◽  
Vol 20 (4) ◽  
pp. 302-307
Author(s):  
Dustin Stephan Melendez Giraldo

Currently the water supply system in the municipality of Corinto (Cauca) in Colombia provides drinking water to the entire urban and rural population of the municipality. In order to provide drinking water to the entire population, it became necessary to optimize and/or expand the existing water treatment plant. The article presents an assessment of the consideration of two optimization options: the need for reconstruction of existing water treatment facilities or the construction of additional water treatment units. A reasonable proposal was made to expand the station by building additional water treatment units, including advanced modern water treatment technologies, such as coagulation, flocculation, sedimentation, filtration, sorption, settling using thin-layer modules and disinfection, based on the survey (diagnostics), technical and economic analysis, analysis of the efficiency of the existing water treatment plant, taking into account the quality of drinking water preparation, confirmed by the analysis of samples, the results of physical, chemical and microbiological tests, indicating the optimal quality of drinking water for human consumption. The use of modern water treatment technologies will allow to achieve the required quality of purified sufficient water for drinking purpose.


2018 ◽  
Vol 7 (4.34) ◽  
pp. 70
Author(s):  
H. M. Zolkipli ◽  
H. Juahir ◽  
G. Adiana ◽  
N. Zainuddin ◽  
A. B.H.M. Maliki ◽  
...  

This study aims to identify the possible sources in drinking water parameters heavy metal and organic parameters (HMOPs) and spatial variation between untreated water and treated water at Federal Territory of Kuala Lumpur water treatment plant. The indicator HMOPs in drinking water in Kuala Lumpur were selected as parameters to discriminate the possible source of water treatment plants (WTPs) pollutant. Chemometric technique such as principal component analysis (PCA) and discriminant analysis (DA) was identified based on the five years’ availability data starting from 2012 to 2016. PCA were used to identify the most significant parameters which are highlighted eleven strong factors loading of parameter respectively out of sixteen for PCs and classified as possible sources in WTPs. Continue with DA analysis that is successful distinguish two categories region in WTP using the forward stepwise and backward stepwise with significant amount is 98.46%. From this study, we can conclude that this chemometric is the best technique of analysis to get a lot of information such as identify possible sources of pollutant and discriminant of two station sampling categories that will give novelty to Malaysian Ministry of Health (MOH) and collaboration agency in National Drinking Water Quality Surveillances Program (NDWQSP).   


Sign in / Sign up

Export Citation Format

Share Document