scholarly journals An Assessment of Coastal Vulnerability of Pahang’s Coast Due to Sea Level Rise

2018 ◽  
Vol 7 (3.14) ◽  
pp. 176 ◽  
Author(s):  
Fazly Amri Mohd ◽  
Khairul Nizam Abdul Maulud ◽  
Othman A. Karim ◽  
Rawshan Ara Begum ◽  
Md Firoz Khan ◽  
...  

Climate change interacts in a different way with varieties of human activities and other drivers of change along coastlines. Sea level rise (SLR) is one of the major impacts of global warming. Changes in climate extremes and SLR may impact the critical infrastructures such as coastal road, jetty and chalets as well as the local community. The population and assets exposed to coastal risks will increase significantly due to population growth, economic development and urbanization in the future. As most of the cities in Malaysia are situated near the coast, immediate actions are needed to minimize the undesired outcome due to the SLR. The main objective of this study is to identify physical variables that may have impacts on the coastal area, thus develop a coastal vulnerability index (CVI) for the East Coast of Peninsular Malaysia. Seven (7) physical variables have been identified to assess the CVI that consists of geomorphology, coastal slope, shoreline change rate, mean significant wave height, mean tidal range, relative sea level rate and land use. A comprehensive CVI was obtained by integrating the differential weighted rank values of the variables. The outcome of this study is useful as a tool for coastal disaster management.  

SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 17
Author(s):  
Mawardi Amin ◽  
Ika Sari Damayanthi Sebayang ◽  
Carolina Masriani Sitompul

Anyer Beach is one of the famous tourist destinations. In addition to tourist destinations, the Anyer beach also has residential and industrial areas. In managing coastal areas, a study of vulnerability is needed due to threats from sea level rise, abrasion/erosion and also high waves that can damage infrastructure and cause losses. The research method is to collect data of hydro-oceanography, coastal vulnerability index calculates (Coastal Vulnerability Index). The coastal vulnerability index is a relative ranking method based on the index scale physical parameters such as geomorphology, shoreline change, elevation, sea level rise, mean tidal, wave height. On the results of the analysis of the criteria of vulnerability based on the parameters of geomorphology in the category of vulnerable with scores of 4, shoreline change in the category of vulnerable with a score of 4, the elevation in the category of extremely vulnerable with scores of 5, sea level rise into the medium category with a score of 3, mean tidal in the category less susceptible with a score of 2, the wave height is very vulnerable in the category with a score of 5. The variable that most influences the vulnerability of Anyer Beach is elevation and wave height.


2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Ezatollah Ghanavati ◽  
Majid Shah-Hosseini ◽  
Nick Marriner

The SE coast of Iran is of great economic and environmental importance. Global climate change affects this coastline through sea level rise (SLR), compounded by a decrease in sediment budgets in coastal areas. This study developed a Coastal Vulnerability Index (CVI) for the SE coast of Iran using satellite, instrumental and field data. Eight risk variables were defined: coastal slope, regional coastal elevation, mean tidal range, mean significant wave height, rate of relative sea-level change, rate of shoreline change, environmental sensitivity and socio-economic sensitivity. The coast was divided into 27 segments based on geomorphic, environmental and socioeconomic traits. Coastal segments were categorized based on their vulnerability to each risk factor using a CVI. The resulting maps highlighted the vulnerability of each coastal segment to SLR. Approximately 50% of the coast is comprised of mostly rocky shores, which are less vulnerable to SLR. Approximately 33% of the coastal length, including sandy beaches, tidal flats and mangrove forests, were determined to be highly vulnerable to SLR. Approximately 12% of the coastline was determined to be moderately vulnerable. Population centers and infrastructure were ranked as highly-to-moderately vulnerable to SLR. This study highlighted the high vulnerability of low-lying areas, such as lagoons and mangroves, in the western part of the Iranian coast of Makran. Proper coastal management and mitigation plans are essential in the future to protect coastal societies and environments.


2021 ◽  
Author(s):  
Avouca Mahamoud ◽  
Maher Gzam ◽  
Nadjim Ahmed Mohamed ◽  
Soulé Hamidou Hamada ◽  
Mabrouk Montacer

Abstract In previous studies, an emphasis on the particular vulnerability of small island states to future sea-level rise and the intensity of increasing storm surges has been discussed. This preliminary assessment develops a Coastal Vulnerability Index (CVI) along the 202 km long coastline of Ngazidja Island (formerly Grande Comore, Comoros Archipelago), using fieldwork, remote sensing, and geographic information system tools (GIS). The CVI considers five structural variables: (a) geology, (b) geomorphology, (c) topography, (d) shoreline change, and (e) shoreline exposure). It also considers three physical process variables: (f) relative sea-level rise, (g) significant wave height, and (h) mean tide range). The land-use variable was added in this analysis to highlight the human asset exposure in the surrounding areas. Each variable was ranked based on local physical and hydrodynamic conditions and their vulnerability contribution to sea-level rise. The CVI was computed in 270 sections. According to the vulnerability index, approximately 57.5% of the coastline is under low and moderate vulnerability. High and very-high vulnerabilities refer specifically to beaches and shores with old volcanic lava flows located mainly in the northern, northeastern, and southeastern parts of the island, approximately 42.5% of the coastline. The lowest value of CVI is 9.2 on high, rocky cliffs and the highest value is 160 on beaches. This vulnerability partition along the coastline is consistent with in situ indicators of coastal erosion and flooding. In a sea-level rise context, it is of prime importance to integrate coastal vulnerability maps with planning and sustainable management of the coastal zone.


2017 ◽  
Vol 50 (3) ◽  
pp. 1721
Author(s):  
A. Mavromatidi ◽  
E. Karymbalis

Tourism development in Greece has led to increasing pressure on coastal areas, which makes the study of sensitive coastal areas essential, in order to find appropriate solutions for their shielding. The aim of this study is an estimation of the effects of an anticipated sea level rise for the touristically developed part of Pieria Prefecture, which includes the settlements Paralia, Skala of Katerini, Olympic Beach, Korinos Beach and extends north to the area of the Kitrous saltworks and south to the mouth of Mavroneri river. Therefore the Coastal Vulnerability Index (CVI) is applied, in an attempt to determine the susceptible parts to the potential sea level rise. CVI depends on the following parameters: (a) coastal geomorphology, (b) coastal slope, (c) shoreline erosion/accretion rate, (d) relative sea-level rise fluctuations, (e) mean tidal range and (f) mean significant wave height. The classification of the coast, which is of particular socio-economic significance since it hosts urbanized areas, into five CVI classes (from very low vulnerability to very high vulnerability), showed that 43.6% of the entire coastline is of very high vulnerability. 


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Gill J. Ainee ◽  
A.M. Anwar ◽  
S. Omar K

Climate change has brought about many threats to the ecosystem by inducing natural hazards, particularly sea level rise. Coastal areas then are subjected to many adverse effects of sea level rise, hence posing a risk to the safety of the coastal population, resources and assets. As part of the mitigation and adaptation measures against these effects, the Coastal Vulnerability Index (CVI) was implemented by many coastal regions. The CVI is an index-based tool to map the risks related to coastal changes. In Malaysia, the practice of CVI is still in its initial stages. Whereby, the Department of Irrigation and Drainage (DID) Malaysia had earlier carried out two pilot projects on CVI. The first is located at Tanjung Piai and the second at the west coast of Pulau Langkawi. This paper reviews the definition and concept of CVI. An alternative implementation approach of CVI in Malaysia is also discussed.


2013 ◽  
Vol 16 (3) ◽  
pp. 17-29
Author(s):  
Hien Thi Thu Le ◽  
Hai Quang Ha

Binh Thuan coastal zone, nearly 192,9 km shoreline, is well known for residential, recreational areas and minor industries. Shoreline is vulnerable to accelerated sea level rise (SLR) due to its low topography and its high ecological. The present study has been carried out with a view to assess the coastal vulnerability of SLR. Coastal vulnerability map has been built to the calculating results of the place vulnerability index (PVI). The PVI is derived by summing the CVI (coastal vulnerability index) and CSoVl (coastal social vulnerability index) scores. CVI is calculated from nine variables: Geology, geomorphology, coastal slope(%), shoreline change rate (m/yr), mean elevation (m), shoreline direction, mean tidal range (m), wave height (m) and SLR (mm/yr). We use two socioeconomic variables for CSoVI which are socioeconomic variable and relative distance to coast. Results of the vulnerable areas analysis indicate that 120,73 km2 is at very high vulnerable, 84,96 km2 high, 109,23 km2 moderate, 113,99 km2 low and 232,20 km2 very low. The method in this study which combine CVI, CSoVI and PVI together is new protocol of coastal vulnerability assessment for Vietnam coastal zone due to future SLR.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2169
Author(s):  
Dimitrios Vandarakis ◽  
Ioannis P. Panagiotopoulos ◽  
Vassiliki Loukaidi ◽  
Georgios-Angelos Hatiris ◽  
Paraskevi Drakopoulou ◽  
...  

The foreseeable acceleration of global sea level rise could potentially pose a major threat to the natural charm and functional integrity of the world-renowned tourist coastal attractions of Rhodes Island, as a result of the anticipated increasing frequency of flooding and erosion events. Hence, this study aims to determine the most vulnerable segments (in terms of physical impact) of the Rhodes coastline through the widely accepted coastal vulnerability index (CVI), applying a combination of well-known, broadly used approaches and methods. The frequency distribution of the current CVI along the island’s coastline suggests a rather worrying high to very high vulnerability of 40%. In addition, a CVI projection to the end of the 21st century (based on the Intergovernmental Panel on Climate Change predictive scenarios) indicates an enhancement of the total vulnerability by 48%, mainly focused on the majority of the western coastline. Hence, a considerable number of popular coastal destinations in the island shall remain under unignorable threat and, therefore, coastal managers and decision-makers need to hatch an integrated plan to minimize economic and natural losses, private property damage and tourism infrastructure deterioration from flooding and erosion episodes, which will most likely be intensified in the future.


2014 ◽  
Vol 14 (12) ◽  
pp. 3317-3329 ◽  
Author(s):  
Z. N. Musa ◽  
I. Popescu ◽  
A. Mynett

Abstract. An evaluation of vulnerability to sea level rise is undertaken for the Niger Delta based on 17 physical, social and human influence indicators of exposure, susceptibility and resilience. The assessment used geographic information systems (GIS) techniques to evaluate and analyse the indicators and the index of coastal vulnerability to floods, if sea level rise conditions are occurring. Each indicator value is based on data extracted from various sources, including remote sensing, measured historical data series and a literature search. Further on, indicators are ranked on a scale from 1 to 5 representing "very low" to "very high" vulnerability, based on their values. These ranks are used to determine a similar rank for the defined coastal vulnerability index (CVSLRI). Results indicate that 42.6% of the Niger Delta is highly vulnerable to sea level rise, such areas being characterised by low slopes, low topography, high mean wave heights, and unconfined aquifers. Moreover, the analysis of social and human influences on the environment indicate high vulnerability to sea level rise due to its ranking for type of aquifer, aquifer hydraulic conductivity, population growth, sediment supply and groundwater consumption. Such results may help decision makers during planning to take proper adaptive measures for reducing the Niger Delta's vulnerability, as well as increasing the resilience to potential future floods.


2018 ◽  
Vol 6 (4) ◽  
pp. 555-563
Author(s):  
Danar Prabowo ◽  
Max Rudolf Muskananfola ◽  
Frida Purwanti

Pantai Maron dan Pantai Tirang merupakan daerah wisata di wilayah pesisir Semarang. Nilai kerentanan pantai tersebut perlu diketahui agar pemanfaatannya tidak terganggu. Pantai Maron dan Pantai Tirang Kecamatan Tugu, Kota Semarang, dianalisis menggunakan metode CVI (Coastal Vulnerability Index), dilakukan pada bulan Mei sampai dengan Juni 2017. Tujuan penelitian ini adalah mengidentifikasi kondisi kerentanan Pantai Maron dan Pantai Tirang, dan mengetahui nilai indeks kerentanan ekosistem Pantai Maron dan Pantai Tirang, Kecamatan Tugu, Kota Semarang. Metode CVI (Coastal Vulnerabilty Index), dilakukan dengan cara menilai kerentanan pantai pada variabel kemiringan pantai, jarak tumbuhan dari pantai, pasang surut rata-rata, tinggi gelombang rata-rata, dan erosi/akresi pantai berdasarkan tabel indeks kerentanan pantai pada lima sel pantai. Hasil penelitian menunjukkan bahwa nilai CVI Pantai Maron antara 6,45 – 9,13 termasuk dalam kategori kerentanan pantai yang rendah (>20,5), sedangkan nilai CVI Pantai Tirang yaitu 10,21 dan 22,82 termasuk dalam kategori kerentanan rendah dan menengah (20,5 – 25,5). Kesimpulan yang dapat disampaikan adalah nilai kerentanan Pantai Maron dan Pantai Tirang, Kecamatan Tugu, Kota Semarang berdasarkan variabel fisik termasuk dalam kategori rendah dan menengah. Maron and Tirang beaches are tourism area in the coastal area of Semarang. The value of vulnerability of the coast should be known so its utilization will not be disturbed. The Maron Beach and Tirang Beach used Coastal Vulnerability Index method. The research was carried out from Mei to June, 2017. The aims of this study are to identify vurnerability conditions of Maron Beach and Tirang Beach, and to know vulnerability index value of Maron Beach and Tirang Beach, Tugu Subdistrict, Semarang City. CVI method used by scoring coastal vulnerability on variables of coastline slope, plants distance from the coast, average tidal range, average wave height, and coastline changes (accresion/erosion) based on table of coastal vulnerability index at five coastal cells. The research show that the CVI value of the Maron Beach 6,45 into 9,13 that include in the low coastal vulnerability category (<20,5), while CVI value of the Tirang Beach 10,21 and 22,82 that include in the low and middle coastal vulnerability category (20,5-25,5). Conclusion of this research is coastal vulnerability index of Maron Beach and Tirang Beach, Tugu Subdistrict, Semarang City based on physical variables belong to low and middle vulnerability.   GMT Detect languageAfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CorsicanCroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchFrisianGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScots GaelicSerbianSesothoShonaSindhiSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshXhosaYiddishYorubaZulu AfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CorsicanCroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchFrisianGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScots GaelicSerbianSesothoShonaSindhiSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshXhosaYiddishYorubaZulu         Text-to-speech function is limited to 200 characters  Options : History : Feedback : DonateClose


Sign in / Sign up

Export Citation Format

Share Document