scholarly journals Deep Convolution Neural Networks for Medical Image Analysis

2018 ◽  
Vol 7 (3.33) ◽  
pp. 115 ◽  
Author(s):  
Myung Jae Lim ◽  
Da Eun Kim ◽  
Dong Kun Chung ◽  
Hoon Lim ◽  
Young Man Kwon

Breast cancer is a highly contagious disease that has killed many people all over the world. It can be fully recovered from early detection. To enable the early detection of the breast cancer, it is very important to classify accurately whether it is breast cancer or not. Recently, the deep learning approach method on the medical images such as these histopathologic images of the breast cancer is showing higher level of accuracy and efficiency compared to the conventional methods. In this paper, the breast cancer histopathological image that is difficult to be distinguished was analyzed visually. And among the deep learning algorithms, the CNN(Convolutional Neural Network) specialized for the image was used to perform comparative analysis on whether it is breast cancer or not. Among the CNN algorithms, VGG16 and InceptionV3 were used, and transfer learning was used for the effective application of these algorithms.The data used in this paper is breast cancer histopathological image dataset classifying the benign and malignant of BreakHis. In the 2-class classification task, InceptionV3 achieved 98% accuracy. It is expected that this deep learning approach method will support the development of disease diagnosis through medical images.  

2020 ◽  
Vol 237 (12) ◽  
pp. 1438-1441
Author(s):  
Soenke Langner ◽  
Ebba Beller ◽  
Felix Streckenbach

AbstractMedical images play an important role in ophthalmology and radiology. Medical image analysis has greatly benefited from the application of “deep learning” techniques in clinical and experimental radiology. Clinical applications and their relevance for radiological imaging in ophthalmology are presented.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1590
Author(s):  
Laith Alzubaidi ◽  
Muthana Al-Amidie ◽  
Ahmed Al-Asadi ◽  
Amjad J. Humaidi ◽  
Omran Al-Shamma ◽  
...  

Deep learning requires a large amount of data to perform well. However, the field of medical image analysis suffers from a lack of sufficient data for training deep learning models. Moreover, medical images require manual labeling, usually provided by human annotators coming from various backgrounds. More importantly, the annotation process is time-consuming, expensive, and prone to errors. Transfer learning was introduced to reduce the need for the annotation process by transferring the deep learning models with knowledge from a previous task and then by fine-tuning them on a relatively small dataset of the current task. Most of the methods of medical image classification employ transfer learning from pretrained models, e.g., ImageNet, which has been proven to be ineffective. This is due to the mismatch in learned features between the natural image, e.g., ImageNet, and medical images. Additionally, it results in the utilization of deeply elaborated models. In this paper, we propose a novel transfer learning approach to overcome the previous drawbacks by means of training the deep learning model on large unlabeled medical image datasets and by next transferring the knowledge to train the deep learning model on the small amount of labeled medical images. Additionally, we propose a new deep convolutional neural network (DCNN) model that combines recent advancements in the field. We conducted several experiments on two challenging medical imaging scenarios dealing with skin and breast cancer classification tasks. According to the reported results, it has been empirically proven that the proposed approach can significantly improve the performance of both classification scenarios. In terms of skin cancer, the proposed model achieved an F1-score value of 89.09% when trained from scratch and 98.53% with the proposed approach. Secondly, it achieved an accuracy value of 85.29% and 97.51%, respectively, when trained from scratch and using the proposed approach in the case of the breast cancer scenario. Finally, we concluded that our method can possibly be applied to many medical imaging problems in which a substantial amount of unlabeled image data is available and the labeled image data is limited. Moreover, it can be utilized to improve the performance of medical imaging tasks in the same domain. To do so, we used the pretrained skin cancer model to train on feet skin to classify them into two classes—either normal or abnormal (diabetic foot ulcer (DFU)). It achieved an F1-score value of 86.0% when trained from scratch, 96.25% using transfer learning, and 99.25% using double-transfer learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Adekanmi Adeyinka Adegun ◽  
Serestina Viriri ◽  
Roseline Oluwaseun Ogundokun

Localization of region of interest (ROI) is paramount to the analysis of medical images to assist in the identification and detection of diseases. In this research, we explore the application of a deep learning approach in the analysis of some medical images. Traditional methods have been restricted due to the coarse and granulated appearance of most of these images. Recently, deep learning techniques have produced promising results in the segmentation of medical images for the diagnosis of diseases. This research experiments on medical images using a robust deep learning architecture based on the Fully Convolutional Network- (FCN-) UNET method for the segmentation of three samples of medical images such as skin lesion, retinal images, and brain Magnetic Resonance Imaging (MRI) images. The proposed method can efficiently identify the ROI on these images to assist in the diagnosis of diseases such as skin cancer, eye defects and diabetes, and brain tumor. This system was evaluated on publicly available databases such as the International Symposium on Biomedical Imaging (ISBI) skin lesion images, retina images, and brain tumor datasets with over 90% accuracy and dice coefficient.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5097 ◽  
Author(s):  
Satya P. Singh ◽  
Lipo Wang ◽  
Sukrit Gupta ◽  
Haveesh Goli ◽  
Parasuraman Padmanabhan ◽  
...  

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiang Li ◽  
Yuchen Jiang ◽  
Juan J. Rodriguez-Andina ◽  
Hao Luo ◽  
Shen Yin ◽  
...  

AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.


2020 ◽  
Vol 64 (2) ◽  
pp. 20508-1-20508-12 ◽  
Author(s):  
Getao Du ◽  
Xu Cao ◽  
Jimin Liang ◽  
Xueli Chen ◽  
Yonghua Zhan

Abstract Medical image analysis is performed by analyzing images obtained by medical imaging systems to solve clinical problems. The purpose is to extract effective information and improve the level of clinical diagnosis. In recent years, automatic segmentation based on deep learning (DL) methods has been widely used, where a neural network can automatically learn image features, which is in sharp contrast with the traditional manual learning method. U-net is one of the most important semantic segmentation frameworks for a convolutional neural network (CNN). It is widely used in the medical image analysis domain for lesion segmentation, anatomical segmentation, and classification. The advantage of this network framework is that it can not only accurately segment the desired feature target and effectively process and objectively evaluate medical images but also help to improve accuracy in the diagnosis by medical images. Therefore, this article presents a literature review of medical image segmentation based on U-net, focusing on the successful segmentation experience of U-net for different lesion regions in six medical imaging systems. Along with the latest advances in DL, this article introduces the method of combining the original U-net architecture with deep learning and a method for improving the U-net network.


Author(s):  
Khalid Raza ◽  
Nripendra Kumar Singh

Background: Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. Objectives: The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. Conclusion: Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.


Author(s):  
Joy Nkechinyere Olawuyi ◽  
Bernard Ijesunor Akhigbe ◽  
Babajide Samuel Afolabi ◽  
Attoh Okine

The recent advancement in imaging technology, together with the hierarchical feature representation capability of deep learning models, has led to the popularization of deep learning models. Thus, research tends towards the use of deep neural networks as against the hand-crafted machine learning algorithms for solving computational problems involving medical images analysis. This limitation has led to the use of features extracted from non-medical data for training models for medical image analysis, considered optimal for practical implementation in clinical setting because medical images contain semantic contents that are different from that of natural images. Therefore, there is need for an alternative to cross-domain feature-learning. Hence, this chapter discusses the possible ways of harnessing domain-specific features which have semantic contents for development of deep learning models.


Sign in / Sign up

Export Citation Format

Share Document