scholarly journals Treatment of Pretreated Textile Wastewater Using Modified Mbbr

2018 ◽  
Vol 7 (3.8) ◽  
pp. 106
Author(s):  
K J.Sosamony ◽  
P A.Soloman

Currently, water pollution control is one of the major logical zones. The textile industry is a major pollution causing industry among the industrial pollutions. Treatment of textile effluent utilizing customary physical as well as chemical strategies is costly, produces enormous amounts of sludge and needs the expansion of lethal chemicals. BOD to COD proportion of textile effluent is low. Thus it is not appropriate to treat textile effluent by a solitary physicochemical or biological process. In this investigation, the textile effluent is dealt with utilizing Moving Bed Bio-film Reactor (MBBR) with the magnetic field after improving the biodegradability by the solar photo-Fenton process. The carriers in MBBR is inoculated with azoarcus bacteria isolated from textile sludge. The fundamental  parameters as pH, carrier filling ratio and contact time were optimized utilizing Box Behnken factual design. The MBBR process has most extreme efficiency at pH 7, filling ratio of 62% and a contact time 2.4 days. In this optimum condition 68.9% BOD and 80% COD  are expelled. At the point when the pretreated wastewater was dealt with MBBR reactor under the influence of magnetic field, the efficiency of the treatment is additionally expanded, so 87.4% COD expulsion and 87% BOD evacuation were accomplished at 12 mT attractive field power when exposure time was at 12 hrs.  

2002 ◽  
Vol 45 (12) ◽  
pp. 305-313 ◽  
Author(s):  
D. Orhon ◽  
H. Dulkadiroğlu ◽  
S. Doğruel ◽  
I. Kabdaşli ◽  
S. Sozen ◽  
...  

The study investigates the effect of partial ozonation of textile wastewater, both at the inlet (pre-ozonation) and the outlet (post-ozonation) of biological treatment, for the optimization of COD and color removals, both typical polluting parameters associated with the textile industry. Pre-ozonation provides at optimum contact time of 15 minutes 85% color removal, but only 19% COD reduction. Removal of the soluble inert COD fraction remains at 7%, indicating selective preference of ozone for simpler compounds. Post-ozonation is much more effective on the breakdown of refractory organic compounds and on color removal efficiency. Ozonation after biological treatment results in almost complete color removal and a 14% soluble inert COD reduction. The polishing effect of post-ozonation also proves quite attractive from an economical standpoint, involving approximately 50% of the ozone utilization at the same ozone flux rate and contact time, yet providing a lower soluble residual COD level.


Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 361-375
Author(s):  
Maimuna Akter ◽  
Fahim Bin Abdur Rahman ◽  
M. Zainal Abedin ◽  
S M Fijul Kabir

Disposal of reactive dye contaminants in surface waters causes serious health risks to the aquatic living bodies and populations adjacent to the polluted water sources. This study investigated the applicability of banana peels to remediate water contamination with reactive dyes used in the textile industry. A set of batch experiments was conducted using a standard dye solution to determine optimum adsorption parameters, and these parameters were used for the removal of dyes from actual wastewater. Fitting experimental data into the isotherm and kinetic models suggested monolayer dye adsorption with chemisorption rate-limiting step. The maximum adsorption found from modeling results was 28.8 mg/g. Fourier transformed infrared (FTIR) spectra revealed the existence of hydroxyl, amine and carboxylic groups, contributing to high adsorption of dye molecules onto the adsorbent surface. About 93% of the dyes from the standard solution were removed at optimum conditions (pH—7.0, initial dye concentration—100 mg/L, contact time—60 min, and adsorbent dose—0.5 g) while this value was 84.2% for industrial textile wastewater. This difference was mainly attributed to the composition difference between the solutions. However, the removal efficiency for actual wastewater is still significant, indicating the high potentiality of banana peel removing dyes from textile effluent. Furthermore, desorption studies showed about 95% of banana peel can be recovered with simple acid-base treatment.


2018 ◽  
Vol 68 ◽  
pp. 04020
Author(s):  
Ariani Dwi Astuti ◽  
Khalida Muda

Textile industry generates large quantities of wastewater. Discharging effluent of textile industry without treatment is led to the degradation of the quality of receiving water bodies.A high color, high BOD/COD and salt (Total Dissolved Solids, TDS) load are founded in the textile wastewater. Several alternative of methods,including physico-chemical methods such as filtration, carbon activated, coagulation and chemical flocculation have been used to treat textile industry wastewater. Although these methods are effective, but they are expensive and result concentrated sludge that creates a secondary disposal problem. The passive uptake of organic and inorganic species including metals and dyes from aqueous solutions by the use of non-growing/living microbial mass or their derivatives is namely biosorption.The effects of pH, weight of biosorbent, contact time and size of biosorbent in biosorption process using Bjerkandera adusta in synthetic textile wastewater were investigated and optimized using response surface methodology (RSM). The optimum removal conditions were determined at pH 4, contact time 90 minutes, weight of biosorbent 3000 mg/L, and size of biosorbent 0.4 mm. Color removal of 53.55% was demonstrated, the experimental data and model predictions agreed well. In the optimization, R2 and 2correlation coefficients for the quadratic model was estimated quite satisfactorily as 0.988 and 0.977, respectively.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


Author(s):  
Z Keszthelyi ◽  
G Meynet ◽  
F Martins ◽  
A de Koter ◽  
A David-Uraz

Abstract τ Sco, a well-studied magnetic B-type star in the Uτer Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configuration which is unusual for a magnetic massive star. We employ the cmfgen radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ mesa and genec stellar evolution models accounting for the effects of surface magnetic fields. To reconcile τ Sco’s properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for τ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain τ Sco’s simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of τ Sco.


2013 ◽  
Vol 67 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Y. Mountassir ◽  
A. Benyaich ◽  
M. Rezrazi ◽  
P. Berçot ◽  
L. Gebrati

The objectives of this work were to carry out a complete characterization of textile wastewater, resulting from a textile unit located in the Marrakesh region. A physico-chemical characterization has been performed, focused on organic and toxicological aspects. The cladoceran Daphnia magna was used as the sensor organism and lethal concentration as a criterion to measure the toxicity of textile wastewater. The physico-chemical and toxicological status of a local textile effluent showed considerable values limitation, when compared to the European Union standard limit and Moroccan guide level and other studies. In view of those characteristics, the wastewater effluent from the textile industry should be considered to be treated before discharge to the environment.


2019 ◽  
Vol 13 ◽  
pp. 122-129 ◽  
Author(s):  
Jeky Chanwala ◽  
Garima Kaushik ◽  
Mohd. Ashraf Dar ◽  
Shivangi Upadhyay ◽  
Akhil Agrawal

2019 ◽  
Vol 5 (02) ◽  
pp. 133-136
Author(s):  
Dheeraj Rathore ◽  
Ratan Singh

The carbon footprint reflects the greenhouse gases (GHGs) generated throughout the life cycle of a human activity or product, and is therefore an important tool for assessing and managing GHGs emissions. Ecological footprint display the impact assesments of waste managments process of any industry, as it generates very harmful products in the environment. However, it needs attention to use advanced technology to mentain the equllibrium of carbon and ecological footprint of textile industry. Presented review comprises the carbon and ecological foot prints of textile effluents and 3R strategy for their possible balance. 3R strategy i.e. reduce, recycle and reuse were discussed in terms of carbon reduction through transport management, and waste management generated from textile industries including nutritional value of textile sludge and effluent for agricultural use.


2019 ◽  

<p>Wastewater from textile industry is considered one of the major environmental challenges due to the large volume of highly colored, polluted and toxic effluent. This study investigated the treatability of real textile wastewater by pilot-scale anoxic-aerobic Membrane Bioreactor (MBR) system without sludge wasting for operation period of 100 days. The proposed system was investigated under different Internal Recycle (IR) ratios and the impact of IR ratio on Total Organic Carbon (TOC), Total Nitrogen (TN) and Color removals were examined. Under IR ratios between anoxic and aerobic tanks of 0.0, 0.5 and 2.0, the respective average removal efficiency of TN was 20.9%,53.4% and 71.7%, whereas average color removal of 81%, 85% and 88%, respectively was noted. The results indicated that increase of recycle ratio from 0.5 to 2.0 enhanced TN removal to about 71% and color removal to above 85%. The IR between anoxic and aerobic tanks has a significant role in TN and color removal due its effect on the development of bacterial communities. On the other hand, the results indicate over 93% TOC removal, which was independent of IR ratio.</p>


2021 ◽  
Vol 7 (2) ◽  
pp. 188-195
Author(s):  
Nurhasni Nurhasni ◽  
Sariana Harahap ◽  
Ahmad Fathoni ◽  
Hendrawati Hendrawati

The ability of bagasse adsorbents to adsorb methylene blue without activation using 0.5 M H2SO4 solution was examined. Methylene blue is widely used in the textile industry because it produces bright colors, and the dyeing process is fast and easy. This research aims to determine the optimum adsorption conditions, namely the variations in contact time, dye concentration, adsorbent mass, and pH effect on methylene blue, which were carried out using the batch method. Furthermore, the adsorbents were characterized by FT-IR and SEM. The optimum state of the bagasse adsorbent to adsorb methylene blue dye has a mass of 0.5 grams, a contact time of 30 minutes, a concentration of 50 ppm, and a pH of 5. The character of the adsorbent after activation with H2SO4 was better than without activation. The highest adsorption efficiency of methylene blue dye in the batch method was 99.67%. The FTIR spectrum of the bagasse adsorbent showed OH, C-H, C=O, C=C, and C-O functional groups. The adsorption isotherm model for methylene blue dye follows the Langmuir isotherm since the graph obtained is linear with the correlation coefficient (R2) = 1, where the adsorbent has a homogeneous surface.


Sign in / Sign up

Export Citation Format

Share Document