scholarly journals A Survey on Unimodal, Multimodal Biometrics and Its Fusion Techniques

2018 ◽  
Vol 7 (4.36) ◽  
pp. 689 ◽  
Author(s):  
A. S. Raju ◽  
V. Udayashankara

Presently, a variety of biometric modalities are applied to perform human identification or user verification. Unimodal biometric systems (UBS) is a technique which guarantees authentication information by processing distinctive characteristic sequences and these are fetched out from individuals. However, the performance of unimodal biometric systems restricted in terms of susceptibility to spoof attacks, non-universality, large intra-user variations, and noise in sensed data. The Multimodal biometric systems defeat various limitations of unimodal biometric systems as the sources of different biometrics typically compensate for the inherent limitations of one another. The objective of this article is to analyze various methods of information fusion for biometrics, and summarize, to conclude with direction on future research proficiency in a multimodal biometric system using ECG, Fingerprint and Face features. This paper is furnished as a ready reckoner  for those researchers, who wish to persue their work in the area of biometrics.  

Integrating different information originating from different sources, known as information fusion, is one of the main factors of designing a biometric system involving more than one biometric source. In this chapter, various information fusion techniques in the context of multimodal biometric systems are discussed. Usually, the information in a multimodal biometric system can be combined in senor level, feature extraction level, match score level, rank level, and decision level. There is also another emerging fusion method, which is becoming popular—the fuzzy fusion. Fuzzy fusion deals with the quality of the inputs or with the quality of any system components. This chapter discusses the associated challenges related to making the choice of appropriate fusion method for the application domain, to balance between fully automated versus user defined operational parameters of the system and to take the decision on governing rules and weight assignment for fuzzy fusion.


Author(s):  
Vandana ◽  
Navdeep Kaur

The digitalization has been challenged with the security and privacy aspects in each and every field. In addition to numerous authentication methods, biometrics has been popularized as it relies on one’s individual behavioral and physical characters. In this context, numerous unimodal and multimodal biometrics have been proposed and tested in the last decade. In this paper, authors have presented a comprehensive survey of the existing biometric systems while highlighting their respective challenges, advantage and limitations. The paper also discusses the present biometric technology market value, its scope, and practical applications in vivid sectors. The goal of this review is to offer a compact outline of various advances in biometrics technology with potential applications using unimodal and multimodal bioinformatics are discussed that would prove to offer a base for any biometric-based future research.


The identification technologies used nowadays consists of biometrics as an essential component. The basic use of a conventional biometric system is to identify the authenticity of an individual through its physical as well as behavioral attributes, which is considered as one of the most suitable method to secure confidentiality of data. Though the security of these systems is stringent to breach, still it does consists of vulnerabilities due to various reasons. One of the major threats the current biometric system possess are the spoofing attacks. Spoofing attacks are difficult to conquer due to the fact that a person tries to masquerade as others in order to gain unauthorized access to the security systems. This is one of the biggest problem concerning the integrity of the biometric system. The study of spoofing attacks has gained interest of various researchers in the field of computer science, still there are aspects which needs greater attention in order to achieve a plausible solution. The study is based on the current biometric systems in order to compare and contrast the existing technology used in facial recognition. A detailed review of the existing anti – spoofing methods will be taken into account to discuss the future research directions. Thus, the work will focus on threats to the current security systems, with an aim to analyse the possible countermeasures, and its applications in real life scenarios.


Author(s):  
Himanshu Purohit ◽  
Pawan K Ajmera

Individual's Identity Authentication depends on physical traits like face, iris, and fingerprint, etc., or behavioral traits like voice and signature. With the rapid advancement in the field of biometrics, multimodal biometric systems are replacing unimodal biometric systems. As the application of molecular biometric system removes certain errors like noisy data, interclass variations, spoof attacks, and unacceptable error rates as compared to unimodal biometric systems. Even the possibilities of multiple scenarios present in multimodal biometric systems are quite helpful for the consolidation of information using different levels of fusion. In this chapter, the authors try to analyze the technological change which is present due to growing field of biometrics with artificial intelligence and undergone a thorough research for multimodal biometric systems for effective authentication purpose. This study is quite helpful for getting different perception for the use of biometrics as a highest level of network security due to the fusion of many different modalities.


Author(s):  
Chitra Anil Dhawale

Biometric Systems provide improved security over traditional electronic access control methods such as RFID tags, electronic keypads and some mechanical locks. The user's authorized card or password pin can be lost or stolen. In order for the biometrics to be ultra-secure and to provide more-than-average accuracy, more than one form of biometric identification is required. Hence the need arises for the use of multimodal biometrics. This uses a combination of different biometric recognition technologies. This chapter begins with the basic idea of Biometrics, Biometrics System with its components, Working and proceeds with the need of Multimodal Biometrics with the emphasis on review of various multimodal systems based on fusion ways and fusion level of various features. The last section of this chapter describes various multimodal Biometric Systems.


Author(s):  
Hunny Mehrotra ◽  
Pratyush Mishra ◽  
Phalguni Gupta

In today’s high-speed world, millions of transactions occur every minute. For these transactions, data need to be readily available for the genuine people who want to have access, and it must be kept securely from imposters. Some methods of establishing a person’s identity are broadly classified into: 1. Something You Know: These systems are known as knowledge-based systems. Here the person is granted access to the system using a piece of information like a password, PIN, or your mother’s maiden name. 2. Something You Have: These systems are known as token-based systems. Here a person needs a token like a card key, smartcard, or token (like a Secure ID card). 3. Something You Are: These systems are known as inherited systems like biometrics. This refers to the use of behavioral and physiological characteristics to measure the identity of an individual. The third method of authentication is preferred over token-based and knowledge-based methods, as it cannot be misplaced, forgotten, stolen, or hacked, unlike other approaches. Biometrics is considered as one of the most reliable techniques for data security and access control. Among the traits used are fingerprints, hand geometry, handwriting, and face, iris, retinal, vein, and voice recognition. Biometrics features are the information extracted from biometric samples which can be used for comparison. In cases of face recognition, the feature set comprises detected landmark points like eye-to-nose distance, and distance between two eye points. Various feature extraction methods have been proposed, for example, methods using neural networks, Gabor filtering, and genetic algorithms. Among these different methods, a class of methods based on statistical approaches has recently received wide attention. In cases of fingerprint identification, the feature set comprises location and orientation of ridge endings and bifurcations, known as a minutiae matching approach (Hong, Wan, & Jain, 1998). Most iris recognition systems extract iris features using a bank of filters of many scales and orientation in the whole iris region. Palmprint recognition, just like fingerprint identification, is based on aggregate information presented in finger ridge impression. Like fingerprint identification, three main categories of palm matching techniques are minutiae-based matching, correlation-based matching, and ridge-based matching. The feature set for various traits may differ depending upon the extraction mechanism used. The system that uses a single trait for authenticity veri- fication is called unimodal biometric system. A unimodal biometric system (Ross & Jain, 2003) consists of three major modules: sensor module, feature extraction module, and matching module. However, even the best biometric traits face numerous problems like non-universality, susceptibility to biometric spoofing, and noisy input. Multimodal biometrics provides a solution to the above mentioned problems. A multimodal biometric system uses multiple sensors for data acquisition. This allows capturing multiple samples of a single biometric trait (called multi-sample biometrics) and/or samples of multiple biometric traits (called multi-source or multimodal biometrics). This approach also enables a user who does not possess a particular biometric identifier to still enroll and authenticate using other traits, thus eliminating the enrollment problems. Such systems, known as multimodal biometric systems (Tolba & Rezq, 2000), are expected to be more reliable due to the presence of multiple pieces of evidence. A good fusion technique is required to fuse information for such biometric systems.


Physiological or behavioral characteristics of a person being identified or verified using biometric systems. The preprocessing block has the fir filter in which enhanced energy-efficiency has been obtained by introducing the low power architectures within it. The implementation of low power architectures in the fir filter part will further provide the optimization in the various parameters such as power, area and timing. Therefore, this will help us to do the biometrics process faster and efficient.


Generally single Support Vector Machine (SVM) is employed in existing multimodal biometric authentication techniques, and it assumes that whole set of the classifiers is available. But sometimes it is not possible due to some circumstances e.g. injury, some medical treatment etc. This paper includes a robust multimodal biometric authentication system that integrates FKP (Finger-Knuckle Print), face and fingerprint at matching score level fusion using multiple parallel Support Vector Machines (SVMs). Multiple SVMs are applied to overcome the problem of missing biometric modality. Every possible combination of three modalities (FKP, face and fingerprint) are taken into consideration and all combinations have a corresponding SVM to fuse the matching scores and produce the final score set for decision making. Proposed system is more flexible and robust as compared to existing multimodal biometric system with single SVM. The average accuracy of proposed system is estimated on a publicly available dataset with the use of MUBI tool(Multimodal Biometrics Integration tool) and MATLAB 2017b.


Author(s):  
Mrunal Pathak

Abstract: Smartphones have become a crucial way of storing sensitive information; therefore, the user's privacy needs to be highly secured. This can be accomplished by employing the most reliable and accurate biometric identification system available currently which is, Eye recognition. However, the unimodal eye biometric system is not able to qualify the level of acceptability, speed, and reliability needed. There are other limitations such as constrained authentication in real time applications due to noise in sensed data, spoof attacks, data quality, lack of distinctiveness, restricted amount of freedom, lack of universality and other factors. Therefore, multimodal biometric systems have come into existence in order to increase security as well as to achieve better performance.[1] This paper provides an overview of different multimodal biometric (multibiometric) systems for smartphones being employed till now and also proposes a multimodal biometric system which can possibly overcome the limitations of the current biometric systems. Keywords: Biometrics, Unimodal, Multimodal, Fusion, Multibiometric Systems


Sign in / Sign up

Export Citation Format

Share Document