scholarly journals Evaluation of Rheological Behavior of Bitumen Modified with Nano Copper Oxide

2018 ◽  
Vol 7 (4.7) ◽  
pp. 13 ◽  
Author(s):  
G. H. Shafabakhsh ◽  
S. R.Sajadib ◽  
. .

Nowadays, one of the most challenging problems facing civil and transportation engineers, which consumes plenty of budgets (causes large amount of cost) for maintenance of asphalt roads, is asphalt destructions. Lots of efforts are done in order to increase the resistance and life span of asphalt, including development of bitumen properties. Bitumen is used broadly in road construction due to its appropriate properties; however, it has some major deficiencies which may lead to destructions of asphalt pavements. Therefore different bitumen modifications are implemented to achieve desired properties for different objectives, including (Such as) using rubber powder, waste materials, various polymers, etc. Recently, researchers are turning to nanotechnology to improve bitumen properties. Conducted studies on this topic (conducted research in this field) show that using modified bitumen by nanomaterial, increases the capacity of the pavement’s load bearing and decreases probable cracks due to fatigue during the operation life of the pavement. In this study, Nano Copper Oxide is used to develop rheological properties of bitumen. Nanoparticles have been added to bitumen with amount of 2.5, 3 and 5 percent and then Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) experiments have been conducted to investigate the effects of using nanoparticles in pure bitumen. Results show that adding Copper Oxide nanoparticles to bitumen improves the performance of base bitumen, especially at middle and low temperatures. 

Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Author(s):  
Monika Vats ◽  
Shruti Bhardwaj ◽  
Arvind Chhabra

Background & Objective: Nanoparticles are used in cosmetic and dermatologic products, due to better skin penetration properties. Incorporation of natural products exhibiting medicinal properties in nano-preparations could significantly improve efficacy of these products and improve the quality of life without the side effects of synthetic formulations. Methods: We here report green synthesis of Copper Oxide nanoparticles, using Cucumber extract, and their detailed biophysical and bio-chemical characterization. Results: These Copper Oxide-Cucumber nanoparticles exhibit significant anti-bacterial and anti-fungal properties, Ultra Violet-radiation protection ability and reactive-oxygen species inhibition properties. Importantly, these nanoparticles do not exhibit significant cellular toxicity and, when incorporated in skin cream, exhibit skin rejuvenating properties. Conclusion: Our findings have implications for nanoparticle-based cosmetics and dermatologic applications.


Sign in / Sign up

Export Citation Format

Share Document