scholarly journals Perbandingan Model Logistic Regression dan Artificial Neural Network pada Prediksi Pembatalan Hotel

2021 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
Moch Shandy Tsalasa Putra ◽  
Yufis Azhar

Prediction for canceled booking hotels is an important part of hotel revenue management systems in the modern era. Because the predicted result can be used for the optimization of hotel performance. The application of machine learning will be very helpful for predicting canceled booking hotels because machine learning can process complex data. In this research, the proposed methods are Artificial Neural Network (ANN) and Logistic Regression. Later it will be done five times experiments with hyperparameter tuning to see which method is the most optimal to do prediction canceled booking hotel. From five times experiments, experiments number five (logistic regression with GridSearchCV) is the most optimal for predicting canceled booking hotels, with 79.77% accuracy, 85.86% precision, and 55.07% recall.

Author(s):  
W. Abdul Hameed ◽  
Anuradha D. ◽  
Kaspar S.

Breast tumor is a common problem in gynecology. A reliable test for preoperative discrimination between benign and malignant breast tumor is highly helpful for clinicians in culling the malignant cells through felicitous treatment for patients. This paper is carried out to generate and estimate both logistic regression technique and Artificial Neural Network (ANN) technique to predict the malignancy of breast tumor, utilizing Wisconsin Diagnosis Breast Cancer Database (WDBC). Our aim in this Paper is: (i) to compare the diagnostic performance of both methods in distinguishing between malignant and benign patterns, (ii) to truncate the number of benign cases sent for biopsy utilizing the best model as an auxiliary implement, and (iii) to authenticate the capability of each model to recognize incipient cases as an expert system.


Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2022 ◽  
pp. 1-30
Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2020 ◽  
Vol 23 (04) ◽  
pp. 2050032
Author(s):  
Muhammad Luqman Nurhakim ◽  
Zainul Kisman ◽  
Faizah Syihab

The Sukuk (shariah bond) market is developing in Indonesia and potentially will capture the global market in the future. It is an attractive investment product and a hot current issue in the capital market. Especially, the problem of predicting an accurate and trustworthy rating. As the Sukuk market developed, the issue of Sukuk rating emerged. As ordinary investors will have difficulty predicting their ratings going forward, this research will provide solutions to the problems above. The objective of this study is to determine the Indonesian Sukuk rating determinants and comparing the Sukuk rating predictive model. This research uses Artificial Neural Network (ANN) and Multinomial Logistic Regression (MLR) as the predictive analysis model. Data in this study are collected by purposive sampling and employing Sukuk rated by PEFINDO, an Indonesian rating agency. Findings in this study are debt, profitability and firm size significantly affecting Sukuk rating category and the ANN performs better predictive accuracy than MLR. The implications of the results of the research for the issuer and bondholder are a higher level of credit enhancement, a higher level of profitability, and the bigger size of firm rewarding higher Sukuk rating.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Muhammad Arif Mahmood ◽  
Anita Ioana Visan ◽  
Carmen Ristoscu ◽  
Ion N. Mihailescu

Additive manufacturing with an emphasis on 3D printing has recently become popular due to its exceptional advantages over conventional manufacturing processes. However, 3D printing process parameters are challenging to optimize, as they influence the properties and usage time of printed parts. Therefore, it is a complex task to develop a correlation between process parameters and printed parts’ properties via traditional optimization methods. A machine-learning technique was recently validated to carry out intricate pattern identification and develop a deterministic relationship, eliminating the need to develop and solve physical models. In machine learning, artificial neural network (ANN) is the most widely utilized model, owing to its capability to solve large datasets and strong computational supremacy. This study compiles the advancement of ANN in several aspects of 3D printing. Challenges while applying ANN in 3D printing and their potential solutions are indicated. Finally, upcoming trends for the application of ANN in 3D printing are projected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marwah Sattar Hanoon ◽  
Ali Najah Ahmed ◽  
Nur’atiah Zaini ◽  
Arif Razzaq ◽  
Pavitra Kumar ◽  
...  

AbstractAccurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.


Author(s):  
Itishree Mohanty ◽  
Dabashish Bhattacherjee

The recent developments in computational intelligence has enhances the applicability of empirical modelling in different areas particularly in the area of machine learning. These new approaches are based on analysing the data about a system, in particular finding connections between the system state variables (input, internal and output variables) without having precise knowledge about the physical behaviour of the system. These data driven methods explain advances on conventional empirical modelling and include contributions from many overlapping fields like Artificial Intelligence (AI), Computational Intelligence (CI), Soft Computing (SC), Machine Learning (ML), Intelligent Data Analysis (IDA), and Data Mining (DM). The most popular computational intelligence techniques used in process modelling of steel industry includes neural networks, fuzzy rule-based systems, genetic algorithms as well as approaches to model integration. This chapter describes mainly the application of Artificial Neural Network (ANN) in steel industry. ANN has extensively used in improving and controlling different processes of steel industry like steel making, casting and rolling which lead to indirect energy savings through reduced product rejects, improved productivity and reduced down time. The efficiency of artificial neural network tool in handling steel plant processes has been discussed in detail. ANN based models are found to be very potential to handle very complex, dynamic and non-linear problems.


This chapter is an explanation of artificial neural network (ANN), which is one of the machine learning tools applied for medical purposes. The biological and mathematical definition of neural network is provided and the activation functions effective for processing are listed. Some figures are collected for better understanding.


Sign in / Sign up

Export Citation Format

Share Document