scholarly journals Optimisation and Evaluation of Ricebean (Vigna Umbellata) Extrusion Process for Downstream Food Processability

2019 ◽  
Vol 4 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Rejaul Hoque Bepary ◽  
D. D. Wadikar ◽  
C. R. Vasudish ◽  
A. D. Semwal ◽  
G. K. Sharma

Ricebean(Vigna umbellata), a native bean of North-Eastern part of India has not been explored fully for development of convenience foods although it is loaded with various vitamins, minerals, dietary fiber, phytochemicals and bioactive compounds. The effect of extrusion parameters namely moisture content, barrel temperature and screw speed on expansion ratio, extrudate density, and breaking strength was investigated by using response surface methodology. It was observed that moisture content of flour had significant (p<0.05) affect on expansion ratio, extrudate density, and breaking strength of extrudates. The optimal combination of process parameters which resulted in extrudates with maximum expansion ratio but minimum extrudate density and breaking strength were 15 per cent moisture content, 110°C barrel temperature and 350 rpm screw speed. The value of water absorption index, water solubility index, swelling power, oil absorption index, bulk density, true density and colour for optimally extruded ricebean flour (OEF) was found significantly different (p<0.05) whereas value of proximate parameters were insignificant (P>0.05) than the native flour. The OEF was used for different downstream processings such as papadability, friability, steamability, cakeability, gravyability and porridgability and compared with that of native flour for their process quality parameters. The cake prepared with OEF had significantly (p<0.05) less baking time (25 min) than the cake of native ricebean flour (35 min). However, consistency and over all acceptability (OAA) of porridge from OEF was found significantly (p<0.05) higher than porridge of native ricebean flour. Hierarchical cluster analysis on OAA showed that porridgability and cakeability were most influential downstream processes

Food Research ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1461-1468
Author(s):  
Nor Qhairul Izzreen M.N. ◽  
Siti Amirah C.G. ◽  
Noorakmar A.W.

The effects of extrusion process parameters on Amplang fish snack production are investigated in this study using a single-screw extrusion machine. The extrusion parameters are based on two factors, namely the barrel temperature (100 - 140oC) and screw speed (146 - 208 rpm). The central composite design (CCD) is used to produce thirteen experimental combinations and the effects of the extrusion parameters on the physical and functional characteristics (hardness, bulk density, expansion ratio, and water absorption and solubility indexes) of the Amplang fish extrudate were assessed as responses. The fish extrudates investigated in this study varied between 45.57 - 246.33 N (hardness), 0.09 - 0.21 g/cm3 (bulk density), 1.00 - 2.67 (expansion ratio), 2.58 - 4.01 g/g (water absorption index), and 19.25 - 29.8% (water solubility index). The bulk density, expansion ratio, water absorption index, and water solubility index were shown to be significantly (P < 0.05) affected by the barrel temperature and screw speed. In conclusion, barrel temperature and screw speed can influence the physical and functional properties of extruded fish snacks and the extrusion technique demonstrated in this study can be utilised to produce Amplang fish snacks in Sabah.


Author(s):  
Navneet Kumar ◽  
B. C. Sarkar ◽  
Harish Kumar Sharma

Dehydrated carrot pomace was added in different proportions (10-30%) to rice flour. The formulation was extruded at different moisture content (17-21%), screw speed (270-310 rpm) and die temperature (110-130°C). The experimental combinations were decided based on central composite rotatable design for four variables at five levels of each variable. The lateral expansion, bulk density, water absorption index, water solubility index, hardness and sensory characteristics were measured as responses. Significant regression models were established with the coefficient of determination, R² greater than 0.70. The results indicated that pomace proportion, screw speed and temperature significantly influenced (P<0.10) lateral expansion; moisture content and screw speed for bulk density; pomace proportion and temperature for water absorption index and water solubility index, pomace proportion, screw speed and temperature for hardness and screw speed for sensory score. The compromised optimum condition obtained by numerical integration for development of extrudates were: carrot pomace of 11.75% in rice flour, moisture content 19.92%, screw speed 249.1 rpm and die temperature 114.3°C. Sensory evaluation revealed that carrot pomace could be incorporated into ready-to-eat expanded products upto the level of 11.75%.


2019 ◽  
Vol 50 (5) ◽  
pp. 853-869 ◽  
Author(s):  
Muhammed Adem ◽  
Sadik J.A. ◽  
Admasu Worku ◽  
Satheesh Neela

Purpose This paper aims to optimize feed moisture contents, barrel temperatures, blending ratios of maize and lupine for processing of protein-rich best quality extruded product using a twin-screw extruder. Design/methodology/approach A three-factor three-level response surface methodology by Box-Behnken Design was applied to evaluate the effect of selected processing conditions of blending ratios of lupine (10-20 per cent), barrel temperatures (120°C-150°C) and feed moisture content (14-18 per cent) on functional, nutritional and sensory characteristics of produced snack food. Findings The results of functional properties such as radial expansion ratio, bulk density, water absorption index, water solubility index observed as 0.71-1.2, 0.33-0.92 g/cc, 4.4-6.4 per cent and 10.2-15.1 per cent, respectively. The snack food showed the moisture 5.6-7.2 per cent, protein 8.1-18.1 per cent, fiber 1.6-2.7 per cent, ash 1.6-2.2 per cent and carbohydrate 64.8-81.4 per cent. The independent variables (lupine blending ratio, barrel temperature and feed moisture content) posed significant effects on expansion ration (p = 0.0030), bulk density (p = 0.0026), water absorption index (p = 0.0075) and water-solubility index (p = 0.0116). Higher blending ratio of lupine was increase in the bulk density and water solubility index, but decrease in expansion ratio and water absorption index of snack food. Higher feed moisture content was led to a reduction in expansion ratio and water-soluble index of snack food. Whereas, higher feed moisture contents was lead to rise in bulk density and water absorption index. Fiber (p = 0.0145), ash (p = 0.0343) and carbohydrate (p = 0.0001) contents were significantly depended on blending ratio. Blending of lupine 15.06 per cent, barrel temperature of 150 °C and feed moisture content of 14.0 per cent produced the snack food with desirability value of 72.8 per cent. Originality/value Protein malnutrition is one of the major problems in child development in under developed countries including Ethiopia. Maize is a top producer in the country but least appreciated for cost. Lupine is one of the undervalued produce consumed in Ethiopia after boiling. Still data on the utilization of maize and lupine in the extruded snack preparation was very limited. Optimization of moisture and barrel temperatures for this snack was not reported clearly yet.


2003 ◽  
Vol 9 (2) ◽  
pp. 101-114 ◽  
Author(s):  
H. Doğan ◽  
M. V. Karwe

Response surface methodology (RSM) was used to analyse the effect of temperature, screw speed, and feed moisture content on physicochemical properties of quinoa extrudates. A three-level, three-variable, Box-Behnken design of experiments was used. The experiments were run at 16-24% feed moisture content, 130-170°C temperature, and 250-500 rpm screw speed with a fixed feed rate of 300 g/min. Second order polynomials were used to model the extruder response and extrudate properties as a function of process variables. Responses were most affected by changes in feed moisture content and temperature, and to a lesser extent by screw speed. Calculated specific mechanical energy (SME) values ranged between 170-402 kJ/kg which were lower than those observed for other cereals, most likely due to high (7.2%) fat content of quinoa. High levels of feed moisture alone, and in combination with high temperature, resulted in poor expansion. The best product, characterised by maximum expansion, minimum density, high degree of gelatinization and low water solubility index, was obtained at 16% feed moisture content, 130°C die temperature, and 375 rpm screw speed, which corresponds to high SME input. It was demonstrated that the pseudo-cereal quinoa can be used to make novel, healthy, extruded, snack-type food products.


Author(s):  
Yang Jin Han ◽  
Trần Thị Thu Trà ◽  
Lê Văn Việt Mẫn

High fiber snack foods are attracting consumers’ attention due to their health benefits. In this research, corn meal and polydextrose are co-extruded with a twin-screw extruder and the screw speed is varied from 150 to 190 rpm. The objective of the research is to evaluate the effects of screw speed on the product quality. As the screw speed is increased, the expansion ratio and crispness of the fried extrudate are enhanced while the bulk density and hardness are reduced. Increase in screw speed results in increased water absorption index and water solubility index of the product. As the screw speed is increased, the mechanical energy of the extrusion process is also increased. The screw speed has significant correlation with the expansion index, bulk density and texture properties of the fried extrudate (p < 0.05).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ok-Ja Choi ◽  
Chang-Cheng Zhao ◽  
Kashif Ameer ◽  
Jong-Bang Eun

Abstract The physicochemical properties of puffed rice snack base (PRSB) prepared via extrusion cooking under various feed moisture contents and screw speeds were investigated. The moisture content, screw speed, and soy flour type significantly (p < 0.05) affected the physicochemical properties of PRSB viz; size, density, porosity, color, breaking strength, crystallinity, water absorption index (WAI) and water solubility index (WSI). While, a slight effect on pasting properties was observed between PRSB added with defatted and full-fat soy flour, respectively. Soy flour lipids significantly (p < 0.05) influenced extrusion cooking conditions especially at high screw speed and feed moisture content. The result revealed that extrusion cooking with addition of full-fatty soy flour can be exploited as a viable method to produce PRS with a high expansion ratio and low breaking strength at recommended extrusion conditions of feed moisture content of 19 % and screw speed of 300 rpm.


2022 ◽  
Vol 5 (1) ◽  
pp. 44
Author(s):  
Pranabendu Mitra ◽  
Sagar Khanvilkar ◽  
Sai Kumar Samudrala ◽  
Kaushal Sunil Shroff

The main objective of this study was to convert the cranberry pomace into value-added extruded cereals/snacks blending with rice flour using a single screw extruder based on the physicochemical properties of extrudates because utilization of the byproduct cranberry pomace would be necessary for the growth of cranberry juice processing industries and the extruded snacks/cereals with higher fiber and antioxidant and less carbohydrate would be required to fulfill the consumers’ demand. The six different formulations by blending 0, 5, 10, 15, 20 and 25% cranberry pomace with 100, 95, 90, 85, 80 and 75% of rice flour, respectively, were extruded using a single screw extruder. The temperature (150℃), screw speed (270 rpm), feed rate (20 Kg/hr) and feed moisture content (35%) were constant during extrusion. The physicochemical properties of the extrudates were characterized to determine the desirable formulations. The results indicated that radial expansion ratio (1.11-1.67), the solid density (0.71-0.76 g/mL), piece density (0.20-0.63 g/mL), porosity (14.49-72.38%), hardness (23-157.73 N), crispness (4.17-13.5), moisture content (3.22-4.39%), water activity (0.14-0.36) and the water solubility (7.07-30.80%) of rice flour and cranberry pomace blend extrudates were varied depending on the combinations of the rice flour and cranberry pomace. The results revealed that up to 20% cranberry pomace could be added with 75-80% rice flour to develop high fiber and antioxidant with less carbohydrate cereal/snack products. The utilization of cranberry pomace combining with rice flour through extrusion process can provide a unique opportunity to generate healthier snacks and cereals that have higher fiber and antioxidant and low carbohydrate.


1997 ◽  
Vol 3 (3) ◽  
pp. 171-174 ◽  
Author(s):  
H.M. Khalil ◽  
B.R. Henry

A fractional factorial design of four variables at two levels each was employed to assess the feasi bility and best parameter for extruding sweet potato solids (SPS) using a single screw extruder. It was determined that a high expansion ratio is a desired quality factor for this type of snack food, due to its contribution to textural perception. Preliminary trials on extrusion of sweet potato solids as the sole component in the feed resulted in brittle, dense, and burnt extrudate. The high sugar content (65% total sugar) of the sweet potato solids was cited as the cause of these attrib utes, consequently it was necessary to incorporate wheat flour into the feed to provide a starch matrix for expansion and to reduce sugar concentration. The controlled parameters were screw speed, barrel temperature, feed moisture content, and SPS level in the feed. Among all possible combinations of controlled parameters, the highest expansion ratio was obtained at a screw speed of 220 rpm, temperature profile of 110, 105, 115 and 105 °C, 13% feed moisture content, 50% sweet potato solids, and 0.5% leavening agent.


2015 ◽  
Vol 16 (SE) ◽  
pp. 519-524
Author(s):  
Neda Hashemi ◽  
Sayed Ali Mortazavi ◽  
Elnaz Milani ◽  
Faride Tabatabaie Yazdi

In recent years, the demand for snacks with optimal functional and nutritional properties has a dramatic increased; hence researching in this regard is considered as an essential task. Almond, is one of the nuts kernel and an important source of nutrients, especially fats, fiber, antioxidants, vitamins and minerals such as iron and calcium. Using this seeds nut in expanded products not only improves the nutritional properties but also it causes to produce a product with optimal functional features. As the screw rate and humidity level have a great effect on the properties of extruded products. In this study, defatted almond flour –corn flour blends (20 - 80) were extruded in a co-rotating twin-screw extruder. Response surface methodology using a central composite design was used to evaluate the effects of independent variables, namely screw rate (120–220 rpm) and humidity level (12–16%) on functional properties (water absorption index, water solubility index and oil absorption index). Based on the process optimization maximum water absorption is 6.54085, water solubility is 25.6472 and oil absorption is 3.09778 that was belong to the production of screw rate 209.17 rpm and the 14% humidity.


2020 ◽  
Vol 12 (9) ◽  
pp. 149
Author(s):  
Peng Liu ◽  
Jianjun Cheng ◽  
Ming Li ◽  
Jing Li ◽  
Hongwei Zhu ◽  
...  

In this study, the effects of different extrusion parameters (extrusion temperature: 100, 130, and 160 &deg;C; moisture content: 22%, 26%, and 30%; screw speed: 180 rpm, 270 rpm, and 360 rpm) on physicochemical properties of finger millet were reviewed. High extrusion temperature produced extrudates with high radial expansion index (REI) and starch digestibility and low bulk density (BD). High moisture content and low screw speed increased BD and total starch content (TSC) while decreasing REI and water solubility index (WSI). WSI and starch digestibility first increased and then decreased with increase in extrusion temperature and moisture content, which reached a maximum at 130 &deg;C nd 26%, respectively. However, water absorption index (WAI) was affected by the interactions among various conditions. The extrudates were darker and yellower than native millet. Based on these extrusion conditions, various millet and millet-based products can be produced.


Sign in / Sign up

Export Citation Format

Share Document