Optimisation of Diesel Engine for Hybrid Military Tracked Vehicles using Matlab-Simulink

2017 ◽  
Vol 67 (4) ◽  
pp. 360
Author(s):  
Hari Viswanath ◽  
A. Kumaraswamy ◽  
P. Sivakumar

<p class="Abstract">The demand in the technology requirements for diesel engines is growing keeping hybrid vehicles in mind. In future the diesel engine no longer drives the wheels directly; as a result the engine can be engaged at a limited number of operating points, thus, offering an opportunity to optimise the fuel efficiency and performance at those operating points. The extent to which this optimisation is possible is limited by practical considerations. Also if the positive and negative power peaks in vehicle during mobility (e.g. acceleration and regenerative braking respectively) can be accommodated by high-power batteries, then the size of the engine can be considerably reduced. The engine’s operating points depend on the power-control strategy. The consequences of modifications to these operating points will have an effect on performance and efficiency. As in series hybrid only a limited number of operating points are involved and dynamic performance requirements are not imposed on the diesel engine, significant improvements can be achieved by the optimisation of the diesel engine at these operating points. The feasibility of optimisation of the engine at these operating points can be done by modification on the injection systems, the valve timings and other such parameters. This kind of approach requires the use of complex and repeated experimental analysis of the engine which is costly, cumbersome and time consuming. An alternative to this kind of experimental approach is to develop a simulation model of the engine with the generator in Matlab- Simulink.</p>

Due to fast depletion of fuel and for the huge demand of various engine fuels in large sectors and power generation, thse biodiesel which is derived from biological wastes can be a substitute of pure diesel oil. Diesel engine has the benefits of low fuel consumption, high potency, smart economical and dynamic performance. However at the identical time, the diesel engine has high NOx and soot emissions. And these two sorts of emissions provides a trade-off relationship which can bring difficulties to satisfy the necessities of emission rules of NOx and soot. This particular paper primarily reviews regarding using of preheated bio-diesel that contains 20 percentage of pure sunflower oil (biological name-Helianthus annuus) and analyses its performance characteristics for selected blend with completely variable loads. Various experiments were carried out by employing a four stroke single cylinder, direct injection, water cooled diesel engine with suitable specifications. Helianthus oil is mixed with bio diesel for fast burning inside the engine cylinder and by doing so , the Cetane number is quite high that leads to the ignition delay shorter. Therefore the overall content is preheated somewhat in order to lift its temperature so as to boost the burning process. Incorporating to this , it reduces the various emissions such as NOx, CO and smoke capacity by 2% to 3%. Various parameters are required to outline the analysis of combustion and performance characteristics of the test fuel like brake thermal efficiency(BTE),basic specific fuel consumption(BSFC), basic specific energy consumption (BSEC),temperature of the exhaust gas and emissions like NOx, unburn hydrocarbons(HC), carbon monoxide(CO) and smoke were carried out in the specified engine


Author(s):  
Mihriban Pekguleryuz ◽  
Erol Ozbakir ◽  
Amir Rezaei Farkoosh

The Diesel engine, introduced by Rudolph Diesel in 1892, achieves a higher combustion ratio and fuel efficiency, has lower CO2 emissions per mile than the gasoline engine and is considered to be one of the most viable environmentally friendly technologies for vehicles. “Clean Diesel” using lower sulfur content fuel has become available since 2006. Currently, the Diesel engine and cylinder head are mostly cast iron to withstand the high compression pressures and temperatures of Diesel operation. Further weight reduction (40%–55%) via aluminum substitution in the Diesel engine would result in substantial fuel economy and increased environmental benefits. Current aluminum alloys cannot meet the requirements of the Diesel engine and a new research topic has emerged in aluminum materials technology to address these requirements. The main issue with aluminum alloys is the low resistance to thermal fatigue that results from the constrained expansion and contraction of the material in the interval regions leading to compressive creep deformation at 300°C during engine heat-up and to tensile deformation around 150°C during engine cooldown. This article discusses the performance requirements and the design principles for aluminum alloys for Diesel engine applications. Efforts on the modification of A356 and A319 alloys via Cu, Mg, Ni, Cr, V, Zr, Ti, and Mn addition are reviewed. Recent studies on Mn/Mo addition are presented and the related principles are introduced in designing high volume fraction, thermally stable, and uniform nanoscale dispersoids using solutes with opposite partitioning coefficients in aluminum.


Author(s):  
K. Subramanian ◽  
A. Kandaswamy ◽  
S. Mhahadevan

The two cylinder diesel engines are most demanding product in Indian market for power genset and tractor applications. But major task faced by engine manufacturers all over the world is to upgrade running engine designs with minimum and cost-effective modifications to meet the next level of emission norms. This saves the precious lead time and investments. In addition uncomplicated design has to be sustained as far as possible while improving emissions. Further the basic desires of the end user in off-road market are good response, transient performance, better low end torque, best fuel efficiency and smooth operation of the engine besides best in class reliability. Additional requirements needed to sustain the market with higher power to weight ratio and increased life of the engine. Henceforth turbocharging applications for off-road diesel engines are promising solution for enhancing rated power, low speed torque, transient performance, optimized fuel efficiency and engine downsizing. A trade-off is required to match some incompatible design issues like overall dimensions, cost, emissions control and performance in order to sustain the existing design. Future diesel engine emission standards will restrict vehicle emissions, particularly nitrogen oxides. In the present work, performance improvement for 1.7L, 2 cylinder in-line naturally aspirated diesel engine with mechanical fuel injection pump for off-road application is developed to contain all needs of the market. Design up-gradation of this engine for Tier IV is made with minimal design changes by optimal combinations of fuel injection equipment. This includes proper optimization of performance with improvements in nozzle geometry, change in injector end pressure. But due to the increased fuel flow rates for improving the engine performance as well as emission reduction, there is also a requirement for increased air flow. Henceforth in this study air flow rate is simulated and discussed for selection of turbocharger and intercooler. Further elaborate design and analysis study is also done on cooled exhaust gas recirculation system for exhaust gas cooling efficiency, Diesel Oxidation catalyst, Selective Catalytic Reduction /Lean NOx Trap substrate selection for reduced pressure drop and maximum retention time for exhaust gas to achieve Tier IV norms in turbocharged intercooled two cylinder engine.


Author(s):  
Feijia Yin ◽  
Arvind G. Rao

This paper focuses on the off-design performance of a turbofan engine with an interstage turbine burner (ITB). The ITB is an additional combustion chamber located between the high-pressure turbine (HPT) and the low-pressure turbine (LPT). The incorporation of ITB in an engine can provide several advantages, especially due to the reduction in the HPT inlet temperature and the associated NOx emission reduction. The objective is to evaluate the effects of the ITB on the off-design performance of a turbofan engine. The baseline engine is a contemporary classical turbofan. The effects of the ITB are evaluated on two aspects: first, the influences of an ITB on the engine cycle performance; second, the influences of an ITB on the component characteristics. The dual combustors of an ITB engine provide an extra degree-of-freedom for the engine operation. The analysis shows that a conventional engine has to be oversized to satisfy off-design performance requirement, like the flat rating temperature. However, the application of an ITB eases the restrictions imposed by the off-design performance requirements on the engine design, implying that the off-design performance of an ITB engine can be satisfied without sacrificing the fuel efficiency. Eventually, the performance of the ITB engine exhibits superior characteristics over the baseline engine at the studied operating points over a flight mission.


Author(s):  
Jian Song ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
Guanghui Su

In order to enhance the inherent safety of sodium-cooled fast reactors, innovative hydraulically suspended absorber rod (HSR) passive shut-down system have been proposed for China demonstration fast reactor. In this study, based on the functional and performance requirements, a full-scale experimental setup has been designed and fabricated for the analysis of the HSR as applied to the prototype reactor. The main characteristic of the test facility is the actuation of the mobile safety rod is triggered by coolant flow rate decrease in the primary loop below half the nominal value and then the rod inserts into the stationary sleeve by gravity. The objective is to investigate the dynamic performance of HSR and establish the laws of its movement at lowering the flow rate modeling the coastdown of primary circulating pump. A series of tests have been performed, including start-up, steady-state operation, loss of flow accident, sensitivity analysis and reliability test. This study also focused on the effect of various factors on scram time, the effect of pump coasting time, rod weight, gap between rod and guide tube, bypass holes, cone angle of rod, flow rate and fluid temperature are analyzed. The experimental results demonstrate the functionality and reliability of the HSR, which would lay foundation for further optimization design.


2015 ◽  
Vol 62 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Protap Kumar Mahanta ◽  
Khokan Debnath ◽  
Md Habibur Rahman

Due to the variation of solar irradiance, temperature and shading conditions, the power generated by a photovoltaic (PV) module and hence the power delivered to the load changes drastically, which imposes the need for analysis of a complete PV system to get the maximum power under these natural variable conditions. In this paper, a complete off-grid PV module based power generation system has been designed and simulated using MATLAB/Simulink and performance has been scrutinized using the value of standard solar irradiance about 1 KW/m-2 for Bangladesh. The simulation model includes solar PV module, the converter power stage with MPPT control and charge controlling functions and here performance of each block has been examined conspicuously. Eventually, it has been found that the model is quite competent to simulate both the I-V and P-V characteristics of a PV module and based on the result it has been predicted that the performance of several modules or even PV array connected in series and/or in parallel with the delivery of maximum power can be tested under different solar irradiance and temperature conditions. DOI: http://dx.doi.org/10.3329/dujs.v62i2.21977 Dhaka Univ. J. Sci. 62(2): 127-132, 2014 (July)


2019 ◽  
Vol 178 (3) ◽  
pp. 112-116
Author(s):  
Paweł KARPIŃSKI ◽  
Konrad PIETRYKOWSKI ◽  
Łukasz GRABOWSKI

The power and efficiency of a two-stroke engine strongly depends on the efficiency of the scavenging process which consists in re-moving the rest of the exhaust gases from the cylinder and filling it with a fresh charge. The quality of the charge exchange process is significantly influenced by the construction of the intake system. The paper presents a zero-dimensional model of the aircraft two-stroke opposed-piston diesel engine with two variants of the intake system: with a mechanical compressor and a turbocharger connected in series with a mechanical compressor. Simulation studies of the developed cases were carried out in the AVL BOOST software. For the defined engine operating points, its performance was compared for different designs of the intake system. It was confirmed that the use of a turbocharger with a mechanical compressor extends the range of operating at high altitudes.


Sign in / Sign up

Export Citation Format

Share Document