Electrochemical studies of N,N-bis pyrazinyl ­ 3,4,9,10 - perylenebis (dicarboximide) (PyPD ) on Pt electrode

2012 ◽  
Vol 16 (1) ◽  
pp. 53-57 ◽  
Author(s):  
E. H. El-Mossalamy ◽  
A. Y. Obaid ◽  
S. A. El-Daly ◽  
I. S. El-Hallag ◽  
A. M. Asiri ◽  
...  

The electrochemical studies of N, N – bis(pyrazinyl) – 3, 4, 9, 10 – perylene bis (dicarboximide) (PyPD) dye has been carried out on Pt electrode using cyclic voltammetry and convolution deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol L-1 tetrabutylammonium perchlorate (TBAP) in acetonitrile solvent (CH3CN). The compound under consideration was reduced via consumption of two sequential electrons to form radical anion and dianion (EE mechanism). The electrode reaction pathway and the electrochemical parameters of the investigated compound were determined using cyclic voltammetry and convolution – deconvolution transforms. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

2011 ◽  
Vol 14 (4) ◽  
pp. 251-258 ◽  
Author(s):  
Abdullah M. Asiri ◽  
Salman A. Khan ◽  
Ibrahim S. El-Hallag ◽  
Ibrahim S. [email protected]

Three carbazole chromophores derivatives featuring dicyno, cyano, ethyl acetate and dimethyl acetate groups as an acceptor moiety with a ? – conjugated spacer and N-methyl dibenzo[b]pyrole as donor were investigated electrochemically at a platinum electrode in 0.1 mol/L tetraethylammonium chloride (TEACl) in acetonitrile solvent via cyclic voltammetry, convolution – deconvolution transforms and digital simulation techniques. Cyclic voltammetric study revealed that the presence of a single reversible oxidative peak due to two sequential electron transfer (EE scheme) and unidirectional reductive peak which proceed as ECEC mechanism. The electrode reaction pathway, the relevant chemical and electrochemical parameters of the investigated carbazole chromophores were determined using cyclic voltammetry, convolution- deconvolution transforms and chronoamperograms. The extracted electrochemical parameters and the nature of the electrode reaction were verified & confirmed via digital simulation method.


2014 ◽  
Vol 17 (1) ◽  
pp. 017-021 ◽  
Author(s):  
A. A. Al-Owais ◽  
I. S. El-Hallag ◽  
L. M. Al-Harbi ◽  
E. H. El-Mossalamy ◽  
H. A. Qari

The electrochemical characteristics of charge transfer complex of 4,4’-bipyridine with benzoquinone derivative have been investigated using cyclic voltammetry, convolutive voltammetry and digital simulation methods. Cyclic voltammetry experiments were performed at a platinum working electrode. The electrode reaction pathway, the relevant chemical and electrochemical parameters of theinvestigated complex were determined using cyclic voltammetry, convolution - deconvolution transforms. The extracted electrochemical parameters and the nature of the electrode reaction were verified & confirmed via digital simulation method.


2011 ◽  
Vol 15 (2) ◽  
pp. 113-121
Author(s):  
Abdullah M. Asiri ◽  
Ibrahim S. El-Hallag ◽  
Ibrahim S. El-Hallag ◽  
A.O. Al-Youbi ◽  
Khalid A. Alamry ◽  
...  

The electrochemical properties of 4-[(anthracen -9-ylmethylene)-amino]-1, 5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one have been carried out using cyclic voltammetry and convolution - deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol/L tetraethyl ammonium chloride (TEACl) in solvent acetonitrile (CH3CN). In switching the potential to positive scan, the compound was oxidized by loss of one electron forming radical cataion followed by fast chemical step and the radical cation loss another two electrons producing trication which followed by chemical reaction (ECEEC). The investigated compound was reduced via consumption of two consecutive electrons to form radical anion followed by fast chemical step and the radical anion gain another electron to form dianion followed by chemical step (ECEC mechanism). The electrode reaction pathway and the chemical and electrochemical parameters of the investigated compound were determined using cyclic voltammetry, convolutive voltammetry and chronoamperometry. The Electrochemical data such as a, ks, Eo , D, and kc of the investigated pyrazole derivative were evaluated expeimentally and verified via digital simulation technique Electrochemical behaviour of the pyrazole compound under consideration was presented and discussed.


2015 ◽  
Vol 18 (3) ◽  
pp. 177-181 ◽  
Author(s):  
A. A. Al-Owais ◽  
I. S. El-Hallag

The voltammetric behavior of anthracen-9-ylmethylene-(3,4-dimethyl-isoxazol-5-yl)-amine compound at Platinium electrode has been performed via convolutive cyclic voltammetry and digital simulation techniques using a conventional platinium electrode in 0.1 mol L-1 tetrabutylammonium perchlorate (TBAP) in acetonitrile solvent (CH3CN). The compound loss one electron forming radical cation followed by fast chemical step and the radical cation loss another two electrons producing trication which followed by chemical reaction (ECEC). Cyclic voltammetry and convolutive voltammetry were used for determination of the chemical and the electrochemical parameters of the electrode reaction pathway of the investigated compound. The Electrochemical parameters such as α, ks, Eo , D, and kc of the investigated isoxazol derivative were verified via digital simulation technique. Voltammetric studies of the investigated isoxazol derivative compound under consideration was presented and discussed.


2016 ◽  
Vol 19 (2) ◽  
pp. 091-095 ◽  
Author(s):  
A. Al-Owais ◽  
I. S. El-Hallag

The electrochemical behavior and the electrode reaction of quinolone azo dye compound was investigated using convolutive cyclic voltammetry at mercury electrode in 50% (v/v) ethanolic Britton-Robinson solutions of pH 2.5 – 12.0. Four electrons slow reduction wave was consumed in acidic and alkaline solutions corresponding to the reduction of the more easily N = N center. A second more cathodic irreversible , pH – dependent, 2-electron wave represents the reduction of quinolone ring. Cyclic voltammetry and convolution transforms were used to determine the kinetic parameters of the electroactive species.The extracted electrochemical parameters were confirmed via digital simulation.Controlled potential coulometry technique was used for calculation the overall number of electrons involved in electrode reaction.


2018 ◽  
Vol 34 (6) ◽  
pp. 2851-2858
Author(s):  
A. A. Al-Owais ◽  
I. S. El-Hallag

The present work aims to report the investigation of the electrochemical behavior of 3- arylazomethine-1,2,4-triazole derivatives in universal aqueous buffer series at mercury electrode. The electrode behavior of the studied compounds was performed via voltammetric studies, chronoamperometry, convoluted transforms, and dp polarography techniques. The relevant chemical and electrochemical parameters of 3- aryl azomethine -1,2,4- triazole derivatives were determined experimentally in universal aqueous buffer series as supporting electrolyte at mercury electrode. CPC was used for determination of the number of electrons to elucidate the mechanistic pathway of electrode reaction of aryl azomethine triazole compounds. Digital simulation method was used to confirm the accuracy of the experimental chemical parameters (homogeneous chemical rate constant) and electrochemical parameters (heterogeneous rate constant, symmetry coefficient and redox potential) via matching between the experimental and theoretical cyclic voltammograms.


2014 ◽  
Vol 21 (03) ◽  
pp. 1450042 ◽  
Author(s):  
ZHUOYUAN YANG ◽  
YUQING MIAO ◽  
TIANRUI WANG ◽  
MINGSHU XIAO ◽  
XIAOCAI LIANG ◽  
...  

In this paper, we first fabricated a nanoPt modified platinum electrode. Then through a simple method, the electrode surface was introduced with a submonolayer of bismuth that acted as an effective promoter. Cyclic voltammetry and other characterizations were employed. The obtained Bi III / nanoPt / Pt electrode exhibited two greatly increased oxidation peaks at negative and positive potential areas, respectively. The signals were far larger than that of platinum electrode because of the large true surface area of nanoparticles and the catalysis of bismuth adsorbed on platinum. In the presence of bismuth, the platinum active sites could combine with more OH - from bismuth hydroxyl to form a new active site for the oxidation of glucose. The prepared Bi III / nanoPt / Pt electrode given high sensitivity and excellent linearship to glucose detection and showed the potential application in the areas of electrocatalysis or electroanalysis.


2001 ◽  
Vol 73 (12) ◽  
pp. 1929-1940 ◽  
Author(s):  
Z. Ezerskis ◽  
Z. Jusys

Potentiodynamic investigations on a platinum electrode show that oxidation of phenol, monochlorophenols, dichlorophenols, 2,3,6-, 2,4,5-, 2,4,6-trichlorophenols, and pentachlorophenol in 1 M NaOH solution, containing 1 mM of phenols, proceeds in the potential region of Pt oxide formation. The oxidation rate of phenols decreases with the increase in the number of chlorine atoms in the benzene ring in the row: phenol > monochlorophenols > dichlorophenols > trichlorophenols > pentachlorophenol. The electrochemical stability of phenols, as studied using a cyclic voltammetry, depends on their chlorination degree and isomerism. Galvanostatic oxidation of 1 M NaOH solutions containing 1 mM of phenol, monochlorophenols, dichlorophenols, 2,3,6-, 2,4,5-, 2,4,6-trichlorophenols, and pentachlorophenol were carried out on a platinum electrode using 30 mA cm­2 current density. The electrolysis of the solutions was performed in the course of 10 h, and concentration of phenols in the anolytes was monitored during oxidation. The concentration of phenolic compounds diminishes from 1 mM to 10­50 mM during 4­5 h of electrooxidation and does not change during further galvanostatic oxidation. A decrease in concentration of phenols during galvanostatic electrolysis weakly depends on the isomerism and a chlorination degree of the compounds. A rapid decrease in concentration of studied phenols during the first 4­5 h of electrolysis and a nonselective oxidation of different chlorophenols suggest that the oxidation proceeds via electrochemically generated oxidants. Further decrease in concentration of phenols is rather small due to deactivation of the electrode as a result of polymerization of corresponding phenols and diffusion limitations.


Sign in / Sign up

Export Citation Format

Share Document