Controlled Synthesis of ZnO Nanostructures by Electrodeposition without Any Pretreatment and Additive Regent

2017 ◽  
Vol 20 (4) ◽  
pp. 175-181
Author(s):  
Xin Xi ◽  
Chao Yang ◽  
Lei Liu ◽  
ShiChao Zhu ◽  
Haicheng Cao ◽  
...  

ZnO nanostructures have been fabricated using electrodeposition method without any additive reagent and nucleation-layer. The influences of the applied voltage, temperature, electrolyte concentration, and time on the nanostructures of ZnO have been investigated using cyclic voltammety (CV), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The result shows that the 1-dimensional (1D) nanostructures tend to be formed at lower voltage and electrolyte concentration, while 2-dimentional (2D) nanostructures can be easily obtained at higher voltage and concentration. Although increasing temperature is helpful to grow 1D nanostructures, but excessive high temperature will destroy the ZnO nanostructures because of the high solubility of ZnO. Furthermore, we reveal the mechanism of the formation of ZnO nanostructures mainly depends on the competition between the hydroxylation and dehydration reaction. Our work is helpful for developing the photocatalytic and photodetection applications using different ZnO nanostructures.

1997 ◽  
Vol 493 ◽  
Author(s):  
S. P. Alpay ◽  
A. S. Prakash ◽  
S. Aggarwal ◽  
R. Ramesh ◽  
A. L. Roytburd ◽  
...  

ABSTRACTA PbTiO3(001) film grown on MgO(001) by pulsed laser deposition is examined as an example to demonstrate the applications of the domain stability map for epitaxial perovskite films which shows regions of stable domains and fractions of domains in a polydomain structure. X-ray diffraction studies indicate that the film has a …c/a/c/a… domain structure in a temperature range of °C to 400°C with the fraction of c-domains decreasing with increasing temperature. These experimental results are in excellent agreement with theoretical predictions based on the stability map.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 48
Author(s):  
Kevin Alvin Eswar ◽  
Mohd Husairi Fadzillah Suhaimi ◽  
Muliyadi Guliling ◽  
Zuraida Khusaimi ◽  
Mohamad Rusop ◽  
...  

ZnO Nanostructures have been successfully deposited on of Porous silicon (PSi) via wet colloid chemical approach. PSi was prepared by electrochemical etching method. ZnO/PSi thin films were annealed in different temperature in the range of 300 °C to 700 °C. Surface morphology studies were conducted using field emission scanning microscopy (FESEM). Flower-like structures of ZnO were clearly seen at annealing temperature of 500 °C. The X-ray diffraction spectra (XRD) have been used to investigate the structural properties. There are three dominant peaks referred to plane (100), (002) and (101) indicates that ZnO has a polycrystalline hexagonal wurtzite structures. Plane (002) shows the highest intensities at annealing temperature of 500 °C. Based on plane (002) analysis, the sizes were in range of 30.78 nm to 55.18. In addition, it was found that the texture coefficient of plane (002) is stable compared to plane (100) and (101). 


Nano Energy ◽  
2016 ◽  
Vol 27 ◽  
pp. 147-156 ◽  
Author(s):  
Chaojiang Niu ◽  
Xiong Liu ◽  
Jiashen Meng ◽  
Lin Xu ◽  
Mengyu Yan ◽  
...  

2018 ◽  
Vol 23 (2) ◽  
Author(s):  
Patricia María Perillo ◽  
Mariel Nahir Atia ◽  
Daniel Fabián Rodríguez

ABSTRACT ZnO nanostructures were synthesized through a chemical method using different Zn precursors and hexamethylenetetramine (HMTA) at 90 °C. The effects of the reactants on the morphological evolution of ZnO nanorods were investigated. The samples were characterized by using XRD, SEM, EDX and BET. The hexagonal wurtzite phase of ZnO was confirmed by X-ray diffraction (XRD). The performed analysis indicated that different morphologies were obtained by changing the reactants.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


2001 ◽  
Vol 674 ◽  
Author(s):  
Xiang-Cheng Sun ◽  
J. A. Toledo ◽  
S. Galindo ◽  
W. S. Sun

ABSTRACTFerromagnetic properties and nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons are studied by transmission electron microscope (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimeters (DSC) and magnetization measurements. The Curie and crystallization temperature are determined to be TC=665K and Tx = 750K, respectively. The Tx value is in well agreement with DSC measurement results. X-ray diffraction patterns had shown a good reconfirm of two metastable phases (Fe23B6, Fe3B) were formed under in-situ nanocrystallization process. Of which these metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline phases of α-Fe (Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of nanocrystalline ferromagnetism, suggesting the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 651-653
Author(s):  
W. L. WANG ◽  
L. LI ◽  
K. J. LIAO ◽  
J. ZHANG ◽  
R. J. ZHANG ◽  
...  

The Magnetothermoelectric and thermoelectric power of nano- ZnO films was investigated. The ZnO films in this study were prepared by DC reactive sputtering using a Zn target (99.99%) containing AL of 1.5%. The films obtained were characterized by SEM, x-ray diffraction, optical and electrical measurements. It was found that the sputtering ZnO films were highly orientation growth with the c-axis perpendicular to the substrate surface. The measurements showed that there was a striking seebeck effect in the ZnO films, and their thermoelectric power was linearly increased with increasing temperature. The experimental results were also demonstrated that the thermoelectric power was degraded under the magnetic field. This finding may ascribe to the magneto resistive effect.


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2759 ◽  
Author(s):  
Ioannis Papadimitriou ◽  
Claire Utton ◽  
Panos Tsakiropoulos

The Al-Nb-Sn phase diagram was studied experimentally in the Nb-rich region to provide important phase equilibria information for alloy design of Nb-silicide based materials for aero engine applications. Three alloys were produced: Nb-17Al-17Sn, Nb-33Al-13Sn and Nb-16Al-20Sn (at.%). As-cast and heat-treated alloys (900 and 1200 °C) were analysed using XRD (X-ray diffraction) and SEM/EDS (scanning electron microscopy/ electron dispersive x-ray spectroscopy). Tin showed a high solubility in Nb2Al, reaching up to 21 at.% in the Sn-rich areas, substituting for Al atoms. Tin and Al also substituted for each other in the A15 phases (Nb3Al and Nb3Sn). Tin showed limited solubility in NbAl3, not exceeding 3.6 at.% as it substituted Al atoms. The solubility of Al in NbSn2 varied from 4.8 to 6.8 at.%. A ternary phase, Nb5Sn2Al with the tI32 W5Si3 crystal structure, was found to be stable. This phase was observed in the 900 °C heat-treated samples, but not in the 1200 °C heated samples.


Sign in / Sign up

Export Citation Format

Share Document