COMBINED EXTRUSION OF GLASSES WITH A CONICAL BOTTOM. MECHANICAL AND MATHEMATICAL ANALYSIS OF THE FOURTH AND FIFTH VARIANTS OF THE PROCESS

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

Using the general methods of A. L. Vorontsov, a mechanical and mathematical study of the fourth and fifth variants of the process of combined extrusion of glasses with a conical bottom was carried out. All necessary design schemes are presented. Calculation formulas have been obtained that make it possible to determine the deformation forces and the magnitude of the plastic deformation areas for each possible variant of the plastic flow of the workpiece metal. These formulas also make it possible to determine which variant of deformation will occur in a particular case, and are necessary for the successful design of this operation. The results of confirming experiments are presented.

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

Using the general methods of A. L. Vorontsov, a mechanical and mathematical study of the first three variants of the process of combined extrusion of glasses with a conical bottom was carried out. All necessary design schemes are presented. Calculated formulas have been obtained that make it possible to determine the deformation forces and the magnitude of the plastic deformation areas for each possible variant of the plastic flow of the workpiece metal. These formulas also make it possible to determine which variant of deformation will occur in a particular case, and are necessary for the successful design of this operation.


Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

For extrusion of glasses with a conical bottom using the method of plastic flow by A. L. Vorontsov, the kinematic and stress states of the extruded metal in the area of the plastic deformation center located under the conical surface of the punch were determined. The resulting formulas will be used to determine the stress state in the region of the hearth located under the central flat part of the punch-son՚s working end. In the future, the results of this mechanical and mathematical analysis will also make it possible to investigate the question of the presence of the taper of the punch, which is optimal in terms of strength.


Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

For extrusion of glasses with a conical bottom using the method of plastic flow by A. L. Vorontsov, the kinematic and stress states of the extruded metal in the area of the plastic deformation center located under the central flat surface of the punch were determined. The formulas for the deforming force and the height of the zone of plastic deformation are obtained. In the future, the results of this mechanical and mathematical analysis will make it possible to formulate a scientifically grounded methodology for calculating the main technological parameters of extrusion of nozzles with a conical bottom, as well as to investigate the issue of the presence of the taper of the punch, which is optimal in strength.


Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

For extrusion of glasses with a conical bottom using the method of plastic flow by A. L. Vorontsov, the kinematic and stress states of the extruded metal in the area of the plastic deformation center located under the formed wall of the glass and adjacent to the cylindrical section of the matrix were determined. The resulting formulas will be used to determine the stress state in the areas of the focus located under the punch end.


2020 ◽  
Vol 0 (4) ◽  
pp. 43-51
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

Formulae have been obtained that are necessary to calculate cumulative deformation in the process of straitened extrusion in the central area closed to the working end of the counterpunch. The general method of plastic flow proposed by A. L. Vorontsov was used. The obtained formulae allow one to determine the deformed state of a billet in any point of the given area. The formulae should be used to take into account the strengthening of the extruded material.


Author(s):  
V.G. Petushkov ◽  
M.I. Zotov ◽  
L.D. Dobrushin

Joining of metals in explosive welding takes place as a result of their plastic deformation during a high speed collision and is usually accompanied by typical formation of waves at the interface. In welding aluminium, the weld boundary can also be straight if the speed of the contact point is νc is ≤ 1900 m/s. These welding conditions make it possible to prevent melting of the metal at the interface and increase at the same time its corrosion resistance. In this article, the effect of the dynamic collision angle on the special features of plastic flow of the metal in the vicinity of the contact boundary in welding sheets of AS5 aluminium is described.


2021 ◽  
pp. 38-43
Author(s):  
A. L. Vorontsov ◽  
◽  
S. M. Karpov ◽  

On the basis of the complete equation system of the plastic flow theory, the solution continuation of the determination problem of the kinematic and stressed states of a blanket during restricted extrusion of П-shaped brackets under conditions of plane deformation in the general case of a nonaligned placement of the punch and the die is stated. The determination of flow velocities and stresses in the area of plastic deformation, located under the punch end near the formed thick wall of the bracket has been carried out. The formulae were obtained, which are required for identification of the main parameters of the extrusion process of П-shaped products with a relatively thin horizontal bridge.


1962 ◽  
Vol 40 (10) ◽  
pp. 1310-1318 ◽  
Author(s):  
H. H. G. Jellinek

The results of experiments on the plastic deformation of hollow snow-ice cylinders, closed at one end, as a function of circumferential stress and temperature are discussed. Data are graphed on deformation as a function of time for a snow-ice cylinder under 7.03 and 14.06 kg/cm2 hydrostatic pressure at −4.5 °C, deformation as a function of hydrostatic pressure from 2.11 to 7.03 kg/cm2, and deformation as a function of temperature at a constant pressure of 10.55 kg/cm2. The natural strain rate of closure at constant circumferential stress and temperature was a constant, which varied with circumferential stress as a sine function and was "exponentially dependent on temperature, with an activation energy of 14.1 kcal/mole at an average circumferential stress of 3.1 kg/cm2. The experiments agree well with an earlier interpretation of the plastic flow process representing flow between grain boundaries.


2007 ◽  
Vol 561-565 ◽  
pp. 843-846 ◽  
Author(s):  
Yasunori Harada ◽  
Makoto Fukunaga ◽  
Kenzo Fukaura ◽  
Satoru Ujihashi ◽  
Yuji Kobayashi

The butt joining of dissimilar sheets using a shot peening process was investigated. Shot peening is a surface treatment and improves the performance of engineering components. In shot peening, the substrate undergoes a large plastic deformation near its surface due to a hit with many shots. Thus, plastic flow characterized by a shear droop occurs at the edge of the substrate due to shot peening. When the dissimilar sheets with the edge of the notch geometry are connected without level difference and shot-peened the connection, the sheets can be joined due to the plastic flow generated by the large plastic deformation during shot peening. In the experiment, a compressed-air-type shot peening machine was employed. The influences of processing conditions on the joining of the dissimilar sheets were examined. The joint strength increased with the kinetic energy of shots. It was found that the present method using shot peening process was effective in joining dissimilar sheets.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kejian Song ◽  
Yuan Long ◽  
Chong Ji ◽  
Fuyin Gao

When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.


Sign in / Sign up

Export Citation Format

Share Document