THE HIGH VOLTAGE TESTING OF DIELECTRIC COATINGS THICKNESS

2020 ◽  
pp. 12-17
Author(s):  
V. A. Syasko ◽  
S. S. Golubev ◽  
A. S. Musikhin

The technology of applying many coatings (including paints and varnishes) involves the layering of visually indistinguishable layers that make up the coating system. However, in case of application technology violation, the number of coating layers (thickness) may not correspond to the declared. Thus, in a number of cases, it is necessary to control the number of layers of the final coating system. One of the most common methods for monitoring the continuity of coatings is the high voltages spark method of non-destructive testing. The method involves the application of a high voltage U between the electrode installed on the surface of the coating and the conductive substrate. The revealing of defect coating area provide by registering the coating breakdown. The analysis shows that the development of methods for detecting not only discontinuities, but also unacceptable thinning of dielectric coatings due to their spark breakdown, seems to be a promising direction in the development of high voltages spark testing. In relation to pulsed high voltages spark testing, the electrical mechanism of the breakdown of dielectrics based on quantum-mechanical concepts, the conditions of its occurrence, and the main relations obtained for calculating the electric strength Es and breakdown voltage Us for protective dielectric coatings are considered in detail. Comparative results of an experimental study of the proposed algorithms for calculating Es and Us, as well as methods for identifying (tolerance control) sections of paint coatings with an unacceptable minimum thickness and coating bubbles, are presented. The application of the proposed algorithms and methods will allow one hundred percent control of the continuity and unacceptable thinning of paint and varnish and similar dielectric protective coatings of the external and internal surfaces of pipelines, as well as various large area facilities.

2005 ◽  
Vol 2 (2) ◽  
pp. 17
Author(s):  
Norhayati Hamzah ◽  
Deepak Kumar Ghodgaonkar ◽  
Kamal Faizin Che Kasim ◽  
Zaiki Awang

Microwave nondestructive testing (MNDT) techniques are applied to evaluate quality of anti-corrosive protective coatings and paints on metal surfaces. A tree-space microwave measurement (FSMM) system is used for MNDT of protective coatings. The FSMM system consists of transmit and receive spot-focusing horn lens antennas, a vector network analyzer, mode transitions and a computer. Diffraction effects at the edges of the sample are minimized by using spot-focusing horn lens antennas. Errors due to multiple reflections between antennas are corrected by using free-space LRL (line, reflect, line) calibration technique. We have measured complex reflection coefficient of polyurethane based paint which is coated on brass plates.


CORROSION ◽  
1958 ◽  
Vol 14 (8) ◽  
pp. 37-38

Abstract Recommended minimum characteristics of an asphalt wrapped underground pipe line coating system are given. Included are physical characteristics of primer, enamel and wrapping, testing methods for primer and enamel. 6.4.5


Author(s):  
K. Morita ◽  
T. Yatsuo ◽  
M. Okamura ◽  
I. Kojima
Keyword(s):  

2021 ◽  
pp. 100135
Author(s):  
Shuai Jia ◽  
Weibing Chen ◽  
Jing Zhang ◽  
Chen-Yang Lin ◽  
Hua Guo ◽  
...  

Author(s):  
Yao Liu ◽  
Jianmai Shi ◽  
Zhong Liu ◽  
Jincai Huang ◽  
Tianren Zhou

A novel high-voltage powerline inspection system is investigated, which consists of the cooperated ground vehicle and drone. The ground vehicle acts as a mobile platform that can launch and recycle the drone, while the drone can fly over the powerline for inspection within limited endurance. This inspection system enables the drone to inspect powerline networks in a very large area. Both vehicle’ route in the road network and drone’s routes along the powerline network have to be optimized for improving the inspection efficiency, which generates a new two-layer point-arc routing problem. Two constructive heuristics are designed based on “Cluster First, Rank Second” and “Rank First, Split Second”. Then local search strategies are developed to further improve the quality of the solution. To test the performance of the proposed algorithms, practical cases with different-scale are designed based on the road network and powerline network of Ji’an, China. Sensitivity analysis on the parameters related with the drone’s inspection speed and battery capacity is conducted. Computational results indicate that technical improvement on the inspection sensor is more important for the cooperated ground vehicle and drone system.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
W. Wang ◽  
Y. Cai ◽  
Y. B. Zhang ◽  
H. J. Huang ◽  
W. Huang ◽  
...  

A parallel and series network structure was introduced into the design of the high-voltage single-chip (HV-SC) light-emitting diode to inhibit the effect of current crowding and to improve the yield. Using such a design, a6.6×5 mm2large area LED chip of 24 parallel stages was demonstrated with 3 W light output power (LOP) at the current of 500 mA. The forward voltage was measured to be 83 V with the same current injection, corresponding to 3.5 V for a single stage. The LED chip’s average thermal resistance was identified to be 0.28 K/W by using infrared thermography analysis.


2020 ◽  
Vol 63 (2) ◽  
pp. 227-233
Author(s):  
G. A. Baranov ◽  
V. A. Gurashvili ◽  
I. D. Djigailo ◽  
O. V. Komarov ◽  
S. L. Kosogorov ◽  
...  

1951 ◽  
Vol 14 (3) ◽  
pp. 105-108 ◽  
Author(s):  
F. B. Claiborne ◽  
K. E. Cox

A survey is presented of the use of preserved milk samples shipped from a state-wide area to a central laboratory for examination. Statistical analysis of comparative results on a large number of samples proved that within 3 days there was no significant change in grade of preserved milk samples from the grade of the identical samples immediately before preservative was added. This method is suggested for uniformity of the laboratory aspects of milk grading programs throughout a large area, and for evaluation of performance of laboratories engaged in this work.


2008 ◽  
Vol 600-603 ◽  
pp. 1135-1138 ◽  
Author(s):  
Ronald Green ◽  
Aderinto Ogunniyi ◽  
Dimeji Ibitayo ◽  
Gail Koebke ◽  
Mark Morgenstern ◽  
...  

In this paper, large area (0.18cm2) SiC DMOSFETs with 1.2 kV and 20 A rating are evaluated for power electronic switching applications. A drain-to-source voltage drop VDS of 2 V at a forward drain current of 20 A (JD = 110 A/cm2) was obtained and a specific on-resistance of 18 mΩ-cm2 was extracted at room temperature. The device on-resistance was measured up to 150°C and initially decreases with increasing temperature, but remains relatively flat over the entire temperature range, demonstrating stable device behavior. High voltage blocking of 1.2 kV between 25°C and 150°C is also demonstrated with a gate-to-source voltage VGS = 0 V. The drain leakage current under reverse bias and high temperature stress is shown to increase from 10 μA at 25°C to 27 μA at 150°C while maintaining the full blocking rating of the device. Experimental results from double-pulse clamped inductive load tests are presented demonstrating fast high voltage and high current switching capability. High voltage resistive-switching measurements on parallel connected SiC DMOSFETs were performed with VDS having rise and fall times of 49 and 74 ns respectively. Thermal camera images taken of parallel connected DMOSFET die during repetitive switching operation with VDS = 420 V, IDS = 25 A and a 40% duty cycle shows a 2°C difference in die temperature, which suggests even current sharing and temperature stable device operation.


Sign in / Sign up

Export Citation Format

Share Document