Single Step Mercerization and Formaldehyde-Free Polyfunctional Finishing on Cotton Fabrics

2021 ◽  
Vol 8 (4) ◽  
pp. 28-35
Author(s):  
Muksit Ahamed Chowdhury ◽  
Sonia Hossain ◽  
Konica Jannat Fatema

Mercerization, the treatment of cotton with concentrated sodium hydroxide under tension, is performed to enhance absorption, luster, strength and dimensional stability. After mercerization, the unreacted sodium hydroxide is neutralized with acids. Neutralization with polycarboxylic acids (PCAs) is likely not only to crosslink the cellulose molecules, but to also enhance other functional attributes like crease recovery behavior, flame retardancy, and soil release properties. In this research, four PCAs with different functional groups were used for fabric neutralization to merge mercerization and poly- functional finishing into one continuous process. The PCA treated fabrics were then assessed for their performance. All four PCAs were effective in improving crease recovery and soil release properties, and reducing the flammability, of the treated cotton fabric.

Cellulose ◽  
2015 ◽  
Vol 22 (4) ◽  
pp. 2787-2796 ◽  
Author(s):  
Wei-Wei Gao ◽  
Guang-Xian Zhang ◽  
Feng-Xiu Zhang

2021 ◽  
Author(s):  
Yunbo Chen ◽  
Xiangyu Zhu ◽  
Xiang Li ◽  
Bijia Wang ◽  
Zhiping Mao ◽  
...  

Abstract The lack of thermo-regulation functionality and high flammability of cotton fabrics greatly restrict their application in high-performance fields. Herein, we report a versatile layer-by-layer (LbL) assembly strategy for introducing to cotton fabrics a multilayered coating consisted of phase change microcapsules and ammonium polyphosphate, endowing them with thermo-regulating and flame retardancy. The coated fabrics were characterized by limiting oxygen index (LOI), scanning electron microscopy (SEM), thermogravimetry (TG), differential scanning calorimetry (DSC) and infrared thermal imaging. The fabric deposited with 20 bilayers (MCPM/APP-20) showed improved flame retardancy with a LOI of 24.4% and residual carbon of 34.24%. It also shows a melting enthalpy of 30.16 J/g, which transferred to a temperature difference of 6.4 ℃ compared with pristine cotton. The functional endowed by the LbL assembly was reasonably durable, with melting enthalpy and residual carbon of MPCM/APP-20 reduced to 17.14 J/g and 19.82% after 30 laundering cycles. These results suggest that LbL assembly was a convenient way for functionalization of cotton fabrics.


2019 ◽  
Vol 8 (3) ◽  
pp. 93-100 ◽  
Author(s):  
Sudirman Habibie

Chitin dan chitosan adalah bahan “chelate” yang sangat kuat untuk ion transisi logam terutama tembaga, nikel dan merkuri, dan sifat-sifat ini yang akan intensif di bahas. Pada studi ini kain kapas (cotton) dikerjakan dengan larutan chitosan-asam polikarboksilat untuk memperoleh kain kapas-chitosan yang mengandung gugus group karboksilat (-COOH) dan gugus amina (-NH2) fungsional. Penggunaan asam polykarboksilat (asam sitrat dan maleik) pada pelarutan chitosan menghasilkan group karboksil 0,5 meqs/g pada kain yang dicelup dengan larutan chitosan asam karboksilat. Kemudian kain kapas yang telah mengandung gugus karboksilat dan gugus amina ini dicelupkan pada larutan garam logam (garam tembaga dan seng). Terbukti bahwa larutan garam tembaga (copper) memberikan warna biru pada kain, hal ini mengindikasikan telah terjadi reaksi kompleks atau “Chelate”. Implikasi dari hasil ini maka diperkirakan kandungan group karboksil dan amina ini akan mempengaruhi pada pencelupan kain, namun hal ini tidak diuji.Kata kunci : Chitosan, Kain Kapas, Chelate, Asam asetat, Asam citrate, Asam maleik, Tembaga sulphate, Tembaga acetate.AbstractChitin and chitosan are powerfull chelating agents for transition metal ions, particularly copper, nickel and mercury, and these properties have been extensively reviewed. In this study, cotton fabric has been treated with chitosan- polycarboxylic acid solution to form chitosan treated cotton fabric containing carboxyl (-COOH) and amine (-NH2) functional groups. The use of polycarboxylic acids (citric and maleic acids) to dissolve chitosan has given carboxyl groups 0.5 meqs/g into chitosan treated cotton fabrics. Instead, the complexing of the treated cotton samples with copper and zinc salts was examined. The copper salt solutions gave blue fabrics confirming easily that complexing or chelation had occurred. There are implications for dyeing cotton making use of these groups but this was not investigated.Keyword : Chitosan, Cotton fabric, Chelation, Acetic acid, Citric acid, Maleic acid, Copper (II) sulphate, Copper (II) acetate.


Cellulose ◽  
2020 ◽  
Vol 27 (17) ◽  
pp. 10473-10487
Author(s):  
Zheng Zhang ◽  
Dezheng Kong ◽  
Heng Sun ◽  
Ling Sun ◽  
Chaohong Dong ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1538
Author(s):  
Denghui Xu ◽  
Shijie Wang ◽  
Yimin Wang ◽  
Yun Liu ◽  
Chaohong Dong ◽  
...  

To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep coating process. A vertical flammability test, limited oxygen index (LOI), thermogravimetric analysis, and cone calorimetry were performed to investigate the thermal behavior and flame retardancy of PDTSP-coated fabrics. The coated cotton fabrics and their char residues after combustion were studied by attenuated total reflection infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results presented that PDTSP-coated cotton fabrics had good flame retardancy and char-forming properties. PDTSP coating was demonstrated to posess gas-phase flame-retardant mechanism as well as a condensed phase flame-retardant mechanism, which can be confirmed by thermogravimetric analysis-Fourier transform infrared spectroscopy (TG-IR) and cone calorimetry test. Also, the preparation process had little effect on the tensile strength of cotton fabrics, although the air permeability and whiteness had a slight decrease. After different washing cycles, the coated samples still maintained good char-forming properties.


2020 ◽  
Vol 44 (18) ◽  
pp. 7386-7394
Author(s):  
Ling Sun ◽  
Shihao Wang ◽  
Jiaojiao Zhang ◽  
Wennan Li ◽  
Zhou Lu ◽  
...  

A novel triazine-based flame retardant capable of reacting with natural cellulose fiber was successfully synthesized and used to improve the flame retardancy of cotton fabrics.


2015 ◽  
Vol 659 ◽  
pp. 527-532 ◽  
Author(s):  
Chularat Sakdaronnarong ◽  
Nattawee Srimarut ◽  
Navadol Laosiripojana

Sugarcane bagasse (SCB) was subjected to a single-step fractionation and hydrolysis reaction in the presence of various organic solvents. The reaction was performed at 170 °C for 3 h when sodium hydroxide was used as catalyst. The results showed that suitable solvents significantly enhanced the yield of lignin fractionation and simultaneous hydrolysis reaction took place indicated by an increase of hydroxyl groups in lignin molecules. Lignin-based polyurethane (LPU) from SCB organosolv lignin polyols had relatively better mechanical and thermal resistant properties compared to LPU from liquefied Kraft lignin from pulp and paper industry.


Sign in / Sign up

Export Citation Format

Share Document