scholarly journals Modelling the ZalaZONE Proving Ground: a benchmark of State-of-the-art Automotive Simulators PreScan, IPG CarMaker, and VTD Vires

Author(s):  
Kálmán Gangel ◽  
Zoltán Hamar ◽  
András Háry ◽  
Áron Horváth ◽  
Gábor Jandó ◽  
...  

In our days, simulation based development is a core element of vehicle engineering, especially considering highly automated or fully autonomous vehicles. Accordingly, the paper presents a benchmark of three different automotive simulators: PreScan, IPG CarMaker, and VTD Vires. The three software tools were applied for the same goal, namely, modelling the ZalaZONE Proving Ground of Hungary for vehicle testing. The paper aims to highlight the experiences while creating the virtual models by presenting and comparing the relevant software features and providing suggestions for scientific or practical application.

2021 ◽  
Vol 11 (7) ◽  
pp. 3147
Author(s):  
Erlend M. Coates ◽  
Thor I. Fossen

This paper presents nonlinear, singularity-free autopilot designs for multivariable reduced-attitude control of fixed-wing aircraft. To control roll and pitch angles, we employ vector coordinates constrained to the unit two-sphere and that are independent of the yaw/heading angle. The angular velocity projected onto this vector is enforced to satisfy the coordinated-turn equation. We exploit model structure in the design and prove almost global asymptotic stability using Lyapunov-based tools. Slowly-varying aerodynamic disturbances are compensated for using adaptive backstepping. To emphasize the practical application of our result, we also establish the ultimate boundedness of the solutions under a simplified controller that only depends on rough estimates of the control-effectiveness matrix. The controller design can be used with state-of-the-art guidance systems for fixed-wing unmanned aerial vehicles (UAVs) and is implemented in the open-source autopilot ArduPilot for validation through realistic software-in-the-loop (SITL) simulations.


As its title suggests, the purpose of this Discussion Meeting is to review the present state of the art in industrial electrochemistry. We have sought to bring together academic and industrial workers in this field as well as other interested participants. I hope that as the meeting proceeds, a cross-fertilization of ideas will occur both in the formal sessions and during the breaks. The organizers of this Meeting have given considerable thought to the order in which the different aspects of electrochemistry should be presented. Evidently we had to begin with the fundamentals, after which we decided to deal with the general aspects of electrosynthesis including the developing possibilities of supplying energy to biological processes by electrochem ical means. This led naturally to consideration of electrochemical engineering and electroanalytical methods for on-line control. In one session we shall move to a very practical application of electrochemistry, namely batteries. Beginning with Volta’s simple cell, this application is one of the oldest in electrochemistry. In spite of all the advances in the subject, the possibilities of new primary and secondary battery systems remain as wide as ever. I, for one, shall be most interested to hear the progress reports of our three speakers.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Senhong Wang ◽  
Jiangzhong Cao ◽  
Fangyuan Lei ◽  
Qingyun Dai ◽  
Shangsong Liang ◽  
...  

A number of literature reports have shown that multi-view clustering can acquire a better performance on complete multi-view data. However, real-world data usually suffers from missing some samples in each view and has a small number of labeled samples. Additionally, almost all existing multi-view clustering models do not execute incomplete multi-view data well and fail to fully utilize the labeled samples to reduce computational complexity, which precludes them from practical application. In view of these problems, this paper proposes a novel framework called Semi-supervised Multi-View Clustering with Weighted Anchor Graph Embedding (SMVC_WAGE), which is conceptually simple and efficiently generates high-quality clustering results in practice. Specifically, we introduce a simple and effective anchor strategy. Based on selected anchor points, we can exploit the intrinsic and extrinsic view information to bridge all samples and capture more reliable nonlinear relations, which greatly enhances efficiency and improves stableness. Meanwhile, we construct the global fused graph compatibly across multiple views via a parameter-free graph fusion mechanism which directly coalesces the view-wise graphs. To this end, the proposed method can not only deal with complete multi-view clustering well but also be easily extended to incomplete multi-view cases. Experimental results clearly show that our algorithm surpasses some state-of-the-art competitors in clustering ability and time cost.


Author(s):  
János Csaba Kun ◽  
Daniel Feszty

Recent trends in vehicle engineering require manufacturers to develop products with highly refined noise, vibration and harshness levels. The use of trim elements, which can be described as Poroelastic materials (PEM), are key to achieve quiet interiors. Finite Element Methods (FEM) provide established solutions to simple acoustic problems. However, the inclusion of poroelastic materials, especially at higher frequencies, proves to be a difficult issue to overcome. The goal of this paper was to summarize the state-of-the-art solutions to acoustic challenges involving FEM-PEM simulation methods. This involves investigation of measurement and simulation campaigns both on industrial and fundamental academic research levels.


Author(s):  
Cong Fei ◽  
Bin Wang ◽  
Yuzheng Zhuang ◽  
Zongzhang Zhang ◽  
Jianye Hao ◽  
...  

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.


2014 ◽  
pp. 115-135 ◽  
Author(s):  
Dragan Ranđelović ◽  
Miloš Ranđelović ◽  
Željko Kuzmanović

Sign in / Sign up

Export Citation Format

Share Document