scholarly journals Heavy Metals Content in Phaeophyceae from Malang Rapat Waters, Bintan

2021 ◽  
Vol 26 (1) ◽  
pp. 57-62
Author(s):  
Hilda Novianty ◽  
Emienour Muzalina Mustafa ◽  
Suratno Suratno

The use of brown-macroalgae (Phaeophyceae) as an alginate source is very broad, covering the food and non-food industry, because of that it is necessary to know the safety of these natural resources, one of which is safe from heavy metal contamination. The purpose of this study was to determine heavy metals concentrations accumulated in several types of Phaeophyceae (brown macroalgae) as an alginate source from Malang Rapat waters, Bintan. The method used was descriptive non-experimental. The determination of the location of sampling was done by purposive sampling method. Samples were taken through free collection, identified species and measured of metal contamination concentrations for As, Cd, and Pb. The data obtained were analyzed descriptively. The results showed that Phaeophyceae found in Malang Rapat waters were Turbinaria conoides, Sargassum aquifolium, Padina australis, Hormophysa cuneiformis with each metal concentration contamination of As 13.95 to 23.30 µg.g-1 dry weight; Cd from 0.33 to 1.08 µg.g-1 dry weight and Pb from 4.72 to 9.92 µg.g-1 dry weight. This study showed that all metal contamination ranges in all Phaeophyceae were on the verge of the maximum limit set by the National Standardization Agency of Indonesia Indonesian (SNI) No 7387 of 2009 and National Agency of Drug and Food Control of RI (BPOM) Regulation No 5 of 2018 for dried macroalgae product so that Phaeophyceae from Malang Rapat waters - Bintan was not safe to be used as raw material for alginate source or other processed products of brown-macroalgae.

Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3348
Author(s):  
Min Tan ◽  
Kun Wang ◽  
Zhou Xu ◽  
Hanghe Li ◽  
Junfeng Qu

Heavy metals accumulate in high water table coal mining subsidence ponds, resulting in heavy metal enrichment and destruction of the ecological environment. In this study, subsidence ponds with different resource reutilization methods were used as study subjects, and non-remediated subsidence ponds were collectively used as the control region to analyze the heavy metal distributions in water bodies, sediment, and vegetation. The results revealed the arsenic content in the water bodies slightly exceeded Class III of China’s Environmental Quality Standards for Surface Water. The lead content in water inlet vegetation of the control region and the Anguo wetland severely exceeded limits. Pearson’s correlation, PCA, and HCA analysis results indicated that the heavy metals at the study site could be divided into two categories: Category 1 is the most prevalent in aquaculture pond B and mainly originate from aquaculture. Category 2 predominates in control region D and mainly originates from atmospheric deposition, coal mining, and leaching. In general, the degree of heavy metal contamination in the Anguo wetland, aquaculture pond, and fishery–solar hybrid project regions is lower than that in the control region. Therefore, these models should be considered during resource reutilization of subsidence ponds based on the actual conditions.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2020 ◽  
Vol 18 (1) ◽  
pp. 99-116
Author(s):  
JR Xavier ◽  
V Mythri ◽  
R Nagaraj ◽  
VCP Ramakrishna ◽  
PE Patki ◽  
...  

Vegetables are defined as edible plant parts generally consumed raw or cooked with a main dish, in a mixed dish, as an appetizer or as a salad. Food safety aspects related to microbial quality (total plate count, yeast and mold and food borne pathogens) and toxic residue (heavy metals) and mineral content were investigated for vegetables such as green leafy vegetable, salad vegetables, sprouts, brinjal, green chilies and French beans collected from organic and conventional outlets from Mysore region, Karnataka, India. Microbial analysis was carried out using standard procedures and mminerals (Ca, K, Fe, Cu, Mg, Mn and Zn) and heavy metals (Cd and Pb) were determined. Significant variations (p>0.05) were observed for microbial quality among organic and conventional vegetables. Mineral and vitamin C content were also significantly higher (p>0.01) in organic samples. Heavy metal contamination for lead and cadmium tested positive for conventional samples while organic samples tested negative. The variables that contributed most for the variability were heavy metal contamination, mineral and vitamin C content. Organically grown vegetables were free from heavy metals and safe for consumption, as well as they are rich in mineral and vitamin C content in comparison to conventional samples. SAARC J. Agri., 18(1): 99-116 (2020)


Author(s):  
Usman Rilwan ◽  
Auta Abdullahi Abbas ◽  
Hudu Abdulrahman

Absorption of heavy metals through swampy agricultural soils may have serious consequences on human health. Present study determined the levels of Chromium (Cr), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Cadmium (Cd) and Lead (Pb) using X- Ray Spectrometry in 10 swampy agricultural soils. The result of this study revealed that, the heavy metals with their respective concentrations (Cr (278.1), Ni (462.1), Cu (314.1), Zn (502.8), As (13.5), Cd (524.5) and Pb (295.5)) were found in the soil samples in mg/kg. It also pointed out that the concentration of the heavy metals in the all soil samples for all locations in decreasing order was Cd > Zn >Ni > Cu >Pb > Cr >As. The concentration in swampy agricultural soils from Kokona was obviously higher than the safe limit set by the regulatory bodies which may be because of the geological activities in the studied area. Hence, heavy metals accumulation in swampy agricultural soils is a big concern in Kokona where people’s daily meal largely contains rice or rice based products which are mostly cultivated in swampy agricultural soils.


2017 ◽  
Vol 3 (01) ◽  
pp. 25-31 ◽  
Author(s):  
Charu Gangwar ◽  
Aprajita Singh ◽  
Raina Pal ◽  
Atul Kumar ◽  
Saloni Sharma ◽  
...  

E-waste is a popular name given to those electronic products nearing the end of their useful life which has become a major source of heavy metal contamination in soil and hence, became the global concern. Various samples of soil were collected from different sites and were determined for heavy metal analysis by the ICP-AAS after the digestion process. The main source of contamination is illegal e-waste recycling activities such as burning of PCB's acid baths etc. Different soil indices like contamination factor, I-geo, pollution load index, were calculated to determine the quality of the soil. Results indicate that e-waste recycling and industrial area are strongly contaminated by the heavy metals. Physiological analysis of soil revealed that e-waste processing and industrial activities decrease the soil pH and organic matter while enhancing the electrical conductivity of soil. The exceedance of metal contamination imposed negative impact to the soil environment and human health.


2013 ◽  
Vol 68 (7) ◽  
pp. 1543-1549 ◽  
Author(s):  
Małgorzata Rajfur ◽  
Andrzej Kłos

Sorption of heavy metals by the sea alga Palmaria palmata was investigated in laboratory conditions. The sorption process of the analytes was carried out with constant flow of the solutions through the algae samples. The Langmuir isotherm model was used to describe equilibria. The experiments confirmed that 50 min of exposure of algae with little heavy metal contamination in contaminated waters results in the increase of concentration of these analytes, proportional to their concentration in the tested waters. On the basis of the Langmuir isotherm direction factor, a = (c(a,max) × K)−1, affinity of heavy metals and algae increases in the following sequence: Mn2+ < Zn2+ ≈ Cd2+ < Cu2+, and the competitiveness of sorption of cations naturally present in the algae environment versus Zn2+ ions changes according to following sequence: Na+ < Ca2+ < H+, defined for the concentrations referring to the ion unit charge. It was also confirmed, that the presence of sodium and calcium ions in the solutions, within the conductivity range from 200 to 1,000 μS/cm, is not statistically significant for the sorption of heavy metals from these solutions.


Sign in / Sign up

Export Citation Format

Share Document