scholarly journals Synthesis and Characterization of Ag@C-TiO2 Nanocomposite for Degradation of Sasirangan Textile Wastewater

2019 ◽  
Vol 22 (6) ◽  
pp. 299-304
Author(s):  
Heny Puspita Dewi ◽  
Joko Santoso ◽  
Nur Firda Trianda ◽  
Rodiansono Rodiansono

Carbon-titanium oxide nanocomposite (denoted as @C-TiO2) was successfully synthesized via hydrothermal method at 150°C for 24 h. The C-TiO2 nanocomposite was furtherly modified by adding an Ag metal dopant (denoted as Ag@C-TiO2) to improve and applied to the photocatalytic degradation of Sasirangan textile wastewater. The composite photocatalysts were characterized by XRD and UV–Vis DRS spectroscopies. XRD patterns showed that TiO2 in @C-TiO2 mainly consisted of a brookite phase, as indicated by a series sharp diffraction peak at 2θ = 27.2° (111), 31.5° (121) and 55.9° (241). The calculated band gap energy (Eg) derived from UV-Vis DRS spectra for TiO2, @C-TiO2, and Ag@C-TiO2 were 2.95 eV, 2.54 eV, and 2.74 eV, respectively. Ag@C-TiO2 photocatalyst was found to be active for the photocatalytic degradation of Sasirangan textile wastewater, as indicated by the change of wastewater color from dark to clear. The quantitative photocatalytic activity of Ag@C-TiO2 was evaluated in the degradation of methylene blue, whereas the conversion of methylene blue was 41.3%. The addition of Ag to @C-TiO2 is believed to play an essential role in the enhancement of photocatalytic activity.

2012 ◽  
Vol 488-489 ◽  
pp. 22-26
Author(s):  
Lek Sikong ◽  
H. Panritdam ◽  
Juntima Chungsiriporn ◽  
S. Te-Chato

SnO2/N – doped TiO2photocatalysts were prepared by the modified sol-gel method. Tin tetrachloride pentahydrate, urea and polyethylene glycol were used as precursors and calcined at a temperature of 500 °C for 2 h for making powders. Different interstitial amount of nitrogen additives were in range of 0 to 40 mol%N. The XRD patterns show the TiO2nanocomposites are anatase phase. It was also apparent that doped nitrogen has an effect on crystallite size and band gap energy on absorbed light wavelength leading of enhancement of photocatalytic activity of TiO2composite nanoparticles. The result showed 20 mol%N of TiO2nanocomposites exhibited high photocatalytic activity, redshift in adsorption edge and a small crystallite size.


2013 ◽  
Vol 853 ◽  
pp. 73-78
Author(s):  
Yan Xi Deng ◽  
Chuan Chuan Liu ◽  
Guang Yang

Diatomite supported Cu-doped TiO2 photocatalysts were synthesized by sol-gel method and characterized by X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance of spectroscopy (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue solution under visible light irradiation. The results show that TiO2/diatomite ratio had a great influene on their photocatalytic activities. All prepared Cu-TiO2/diatomite had a better photocatalytic activities in comparison with Cu-TiO2 and the Cu-TiO2(30)/diatomite had higher photocatalytic activity than others. The photocatalytic degradation of methylene blue is due to the breaking of the chormophoric group, rather than the simple decoloration.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


RSC Advances ◽  
2020 ◽  
Vol 10 (39) ◽  
pp. 23024-23037 ◽  
Author(s):  
Fengxia Zhang ◽  
Wenjing Li ◽  
Tianyi Jiang ◽  
Xuemei Li ◽  
Yuanyuan Shao ◽  
...  

Three novel visible-light-driven composite photocatalysts were synthesized by hydrothermal method. The effects of introducing PDIs with different structures into TiO2 were evaluated by assaying the photodegradation rate of methylene blue.


2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


2021 ◽  
Vol 21 (7) ◽  
pp. 3882-3886
Author(s):  
Yong-Wook Jung ◽  
Jong Kyu Kim

In this study, nano-sized low cost titanium dioxide (TFS) was prepared using sludge from sewage treatment and performance was verified. To remove air pollutants, the photocatalytic degradation of methylene blue and efflorescence characteristics is assessed according to the mixing ratio of the nano-sized TFS by applying them to concrete sidewalk blocks. The photocatalytic degradation performance of concrete sidewalk blocks shows that the methylene blue removal rate of specimens containing 2.5%, 5%, and 10% of nano-sized TFS is 29%, 27%, and 38%, respectively. When the nano-sized TFS is mingled on the surface of the sidewalk block, the performance of anti-corrosion and antifouling showed excellency mainly due to the moisture blocking derived by the antifouling function of photocatalysts.


Sign in / Sign up

Export Citation Format

Share Document