scholarly journals Repairing and commissioning of an AC motor speed controller for a centrifugal pump

2019 ◽  
Vol 1 (2) ◽  
pp. 47
Author(s):  
Md. Touhid Nur Rahman ◽  
Md. Momin Turzo ◽  
Ahammed Masum Billah ◽  
Md. Masum Akanda ◽  
Md. Rahat Rahman

A centrifugal pump was installed in 1984 in the Fluid Mechanics Laboratory of Mechanical Engineering Department of Rajshahi University of Engineering & Technology. The motor of the centrifugal pump was dc motor and was not working. It could not be commissioned for a long time because of the damaged speed controller. The main shaft (rotor) was also jammed. In this project work, the dc motor was tried to repair. But it could not be run because the specification of the motor and the operating manual was not available. To complete the project successfully, the dc motor was replaced by an ac induction motor. After replacing the motor, the speed of the new motor was controlled by a variable frequency drive (VFD). Using this device, the speed was controlled from 600 rpm to 3000 rpm smoothly. After the replacement, the testing of the centrifugal pump was successfully performed and the motor was controlled in various speeds. Experiment on the performance test of the centrifugal pump was carried out satisfactorily running the pump in various speeds operated by the VFD.

Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2018 ◽  
Vol 7 (3.27) ◽  
pp. 116
Author(s):  
S Reeba Rex ◽  
Mary ` Synthia Regis Praba2

This paper presents an implementation of a microcontroller based boost converter to maintain constant speed of a DC motor. The optimised values namely kp,ki,kd  of the  Boost Converter  are taken from firefly algorithm[10] and implemented using microcontroller. Pulse width modulation (PWM) is a procedure to generate changeable pulse width with different duty cycle. The PWM signal reduces the switching losses. This paper presents a DC motor speed controller where PID Controller is used where the optimized values of kp,ki,kd are taken from firefly algorithm[10]. The PWM pulse width will alter the speed of the motor.  The motor voltage and revolutions per seconds (RPS) obtained at different duty cycle rates. With increase in duty cycle, further voltage is applied to the motor. This gives stronger magnetic flux in the armature windings and to enhance revolutions per seconds. The characteristics and concert of the DC motor speed control system was discussed. In this paper, a PIC microcontroller is designed with a DC-DC boost converter for the motor speed controller system. Finally to improve the graphical result we design the hardware in loop method using matlab.  


Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


Author(s):  
Khalid Mohammed ◽  
Jabbar A.F. Yahaya ◽  
Reyasudin Basir Khan

This research presents a very important industrial issue of controlling the production target, despite changing loads. Engines of various types, whether synchronous or synchronous, operate on single and three phase AC, DC motors or special motors such as stepper and servo. In all these motors, the speed control of the torque and speed of the above motors has gained considerable importance. There are three main ways reviewed in the current search, the second that completes the previous research referred to in the references. The three methods are PID method, LQR method and feeding –forward control methods. A real DC motor was used in electrical engineering machine laboratory at University of Diyala, Iraq. Where the actual parameters of the DC motor were actually calculated. The practical parameters were then integrated into the three control method Matlab codes for the purpose of comparing the results and representing the motor performance in the indicated control methods.


2017 ◽  
Vol 36 (3) ◽  
pp. 867-875
Author(s):  
II Ekpoudom ◽  
IE Archibong ◽  
UT Itaketo

This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the driver DC motor speed drifted from the desired speed of 1450 revolutions per minutes (rpm) to as low as 1414 rpm. It is against this backdrop, that this project work was envisaged to design a controller capable of controlling the speed of the DC motor in order to achieve the desired speed rating of 1450 rpm. In modelling the motor, the transfer function method was used to develop a linear approximation to the actual motor. After computing the total inertia of the motor shaft, the motor model was simulated for the speed response in MATLAB and Simulink environment, and the response showed that the motor attained an actual maximum speed of 1414 rpm at settling time of 0.3 seconds.  Based on expert knowledge of the lube oil system, a fuzzy logic controller was designed and this resulted in the issuance of a control action to correct the actual speed of the motor from 1414 rpm to the desired speed of 1450 rpm.  http://dx.doi.org/10.4314/njt.v36i3.29


2021 ◽  
Author(s):  
Mina Nozohouri

Torsional vibration of a complex electro-mechanical system consisting of a VFD controller and AC induction motor is investigated in this thesis to study the dynamical behavior of a rather complex motor drive, used to power a DC generator and a set of heat-generation resistors for achieving various levels of nominal loads over a wide range of nominal frequencies/speeds. Two magnetic encoders are placed at two locations to record the arrival times of two arrays of teeth in connection with a data acquisition system. Through a Matlab-coded algorithm, the instantaneous angular speeds and their harmonic compositions up to 16th order of the mean motor speed can be accurately discerned. The model and the algorithms developed in this thesis can be used in a variety of machines and testing systems powered by induction motors and regulated by variable-frequency-drive controllers for design, condition monitoring and identification of sources of noise and disastrous vibration.


2015 ◽  
Vol 8 (1) ◽  
pp. 80 ◽  
Author(s):  
Ali Taki El-Deen ◽  
Ahmed Abdel Hakim Mahmoud ◽  
Ahmed R. El-Sawi

Sign in / Sign up

Export Citation Format

Share Document