Micro controller based adjustable closed-loop dc motor speed controller

Author(s):  
Y.S. Ettomi ◽  
S.B.M. Moor ◽  
S.M. Bashi ◽  
M.K. Hassan
2021 ◽  
Vol 20 ◽  
pp. 140-148
Author(s):  
Amir Salmaninejad ◽  
Rene V. Mayorga

A Direct Current (DC) Motor is usually supposed to be operated at a desired speed even if the load on the shaft is exposed to changes. One of its applications is in automatic door controllers like elevator automatic door drivers. Initially, to achieve this aim, a closed loop control can be applied. The speed feedback is usually prepared by a sensor (encoder or tachometer) coupled to the motor shaft. Most of these sensors do not always perform well, especially in elevator systems, where high levels of noise, physical tensions of the mobile car, and maintenance technicians walking on the car, make this environment too noisy. This Paper presents a new approach for precise closed loop control of the DC motor speed without a feedback sensor, while the output load is variable. The speed here is estimated by the Back EMF (BEMF) voltage obtained from the armature current. First, it is shown that a PID controller cannot control this process alone, and then intelligent controllers, Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference Systems (ANFIS), assisting PID are applied to control this process. Finally, these controllers’ performance subjected to a variable mechanical load on the motor shaft are compared.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2018 ◽  
Vol 7 (3.27) ◽  
pp. 116
Author(s):  
S Reeba Rex ◽  
Mary ` Synthia Regis Praba2

This paper presents an implementation of a microcontroller based boost converter to maintain constant speed of a DC motor. The optimised values namely kp,ki,kd  of the  Boost Converter  are taken from firefly algorithm[10] and implemented using microcontroller. Pulse width modulation (PWM) is a procedure to generate changeable pulse width with different duty cycle. The PWM signal reduces the switching losses. This paper presents a DC motor speed controller where PID Controller is used where the optimized values of kp,ki,kd are taken from firefly algorithm[10]. The PWM pulse width will alter the speed of the motor.  The motor voltage and revolutions per seconds (RPS) obtained at different duty cycle rates. With increase in duty cycle, further voltage is applied to the motor. This gives stronger magnetic flux in the armature windings and to enhance revolutions per seconds. The characteristics and concert of the DC motor speed control system was discussed. In this paper, a PIC microcontroller is designed with a DC-DC boost converter for the motor speed controller system. Finally to improve the graphical result we design the hardware in loop method using matlab.  


Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


Author(s):  
Khalid Mohammed ◽  
Jabbar A.F. Yahaya ◽  
Reyasudin Basir Khan

This research presents a very important industrial issue of controlling the production target, despite changing loads. Engines of various types, whether synchronous or synchronous, operate on single and three phase AC, DC motors or special motors such as stepper and servo. In all these motors, the speed control of the torque and speed of the above motors has gained considerable importance. There are three main ways reviewed in the current search, the second that completes the previous research referred to in the references. The three methods are PID method, LQR method and feeding –forward control methods. A real DC motor was used in electrical engineering machine laboratory at University of Diyala, Iraq. Where the actual parameters of the DC motor were actually calculated. The practical parameters were then integrated into the three control method Matlab codes for the purpose of comparing the results and representing the motor performance in the indicated control methods.


2018 ◽  
Vol 9 (2) ◽  
pp. 74-79
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi

Buck Boost converter controls the use of efficient and economical low and medium power applications, another advantage is its simple design. Very fast response speed, low harmonic distortion components, and high power factor. In this paper, simulation control of the Buck-Boost DC Motor is presented using PSIM software. The results of the analysis and simulation with the PSIM program can be summarized as follows: In open loop dc motor speed, stable in 4.181 seconds and DC motor speed -2.499 rpm. In a closed loop controlled condition, the dc motor speed is stable at 2,308 seconds and the DC motor speed is 6,702 rpm


Sign in / Sign up

Export Citation Format

Share Document