scholarly journals Evaluasi Kuat Tumpu Alat Sambung Baut pada Papan WPC dari Limbah Sengon dan Plastik HDPE

2016 ◽  
Vol 22 (2) ◽  
pp. 129
Author(s):  
Yudhi Arnandha ◽  
Iman Satyarno ◽  
Ali Awaludin ◽  
Arfiati Fardhani

Wood Plastic Composite (WPC) is wood based material that been produce by mixing sawdust as main composition and plastic polymer as bonding agent. Nowadays, WPC board already been produced in Indonesia using Sengon sawdust and recycle HDPE plastic. Sengon sawdust was used as WPC since its availability from plywood production waste, moreover HDPE plastic considered had higher strength and more rigid than PET plastic. WPC occasionally being used as non structural material, moreover from previous study about mechanical properties of WPC, it was found that WPC Sengon has high shear strength around 25 – 30 MPa. These lead that WPC Sengon had a potential used as shear wall sheathing, thus additional research need to be conducted in order to study the type of bolt and diameter of the bolt can be used for these shear wall. This study aimed to investigate the dowel bearing of bolt using full hole method based on ASTM D5764 with type and bolt diameter as specimen variation. Two types of bolt were used in this study; stainless bolt and standard bolt with diameter each of 6 mm, 8 mm, 10 mm and 12 mm. According to ANOVA, there was insignificant result between stainless bolt and standard one, but there was significant result based on diameter of the bolt. Hereafter, it can be recommended the used of 10 mm diameter of bolt for structural purpose with dowel bearing strength around 67 – 70 MPa.

2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


Author(s):  
K. Bhaskar ◽  
D. Jayabalakrishnan ◽  
M. Vinoth Kumar ◽  
S. Sendilvelan ◽  
M. Prabhahar

2017 ◽  
Vol 737 ◽  
pp. 281-286 ◽  
Author(s):  
Pornsri Sapsrithong ◽  
Kesinee Puksattee ◽  
Kingkaew Saewjaidee ◽  
Navapon Pensuk ◽  
Apaipan Rattanapan

Morphology, mechanical properties and rheological behavior of wood plastic composite, derived from acrylate-styrene-acrylonitrile (ASA) and bagasse which was treated with potassium permanganate (KMnO4) and using styrene butadiene rubber (SBR) as impact modifier, were reported. The effect of fiber surface treatment with KMnO4 and different amount of SBR on properties of wood plastic composite, prepared from ASA and 50 phr of bagasse, were investigated. Wood plastic composites (both treated and untreated) with varying amount of SBR, as impact modifier from 0-15 wt% of ASA, were prepared by melt-blending technique. The specimens were shaped with a compression molding machine and characterized, including morphology, impact strength, flexural properties and rheological behavior. It was demonstrated that the fiber surface treatment, using KMnO4, could effectively impove interfacial adhesion between bagasse and ASA matrix. These led to an improvement of morphology and mechanical properties such as impact strength, flexural strength and modulus. SEM micrographs revealed that the interfacial modification enhanced the interfacial adhesion between bagasse (fiber) and ASA (matrix) causing an increasing of shear stress and shear viscosity. Additionally, the effect of amount of SBR, as impact modifier, was also reported. The resulted showed that the impact strength was improved with increasing the amount of SBR (up 5 wt% of ASA) whereas, flexural strength and modulus were found to decrease with increasing SBR content.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91783-91790 ◽  
Author(s):  
Yanhong Tian ◽  
Zhi Jiang ◽  
Chenxi Wang ◽  
Su Ding ◽  
Jiayue Wen ◽  
...  

Cu–Ag core–shell nanoparticles owned good anti-oxidation ability, and as-fabricated joints using the Cu–Ag core–shell nanoparticles paste showed high shear strength.


2012 ◽  
Vol 710 ◽  
pp. 180-185 ◽  
Author(s):  
Niraj Nayan ◽  
S.V.S. Narayana Murty ◽  
Alok Agarwal ◽  
S.C. Sharma ◽  
P.P. Sinha

Al-Cu-Mg (Russian grade V65) alloys are used for riveting applications in aerospace industries due to their relatively high shear strength of the order of 25 kg/mm2 combined with a high plasticity. This paper presents the processing of V65 aluminium alloy rivets from wire rods. It was observed that wire rods which have not been intermittently annealed and having more than 25% cold working prior to heading operation, cracked on the free bulged surface of the head. In view of this, it is recommended that a maximum of 25% of cold work is allowed in the wire rods to be used for rivet fabrication to successfully realize defect free rivets.


2020 ◽  
pp. 152808372096073
Author(s):  
Marwa A Abd El-baky ◽  
Mohamed A Attia

In this study, the effect of different weight percentages (wt. %) of halloysite nanotubes (HNTs) on the mechanical performance of glass laminate aluminum (Al) reinforced epoxy (GLARE) was investigated. GLARE (3/2) laminates with quasi-isotropic lay-up, [Al/[(0°/90°)/(45°/−45°)]s/Al/[(0°/90°)/(45°/−45°)]s/Al] filled with 0, 0.25, 0.5, 1, 2 and 3 wt. % of HNTs were fabricated using hand lay-up followed by compression molding. To explore the effect of HNTs on the mechanical properties, tensile, flexural, in-plane shear, interlaminar shear, bearing and impact tests were conducted. Results demonstrated that the inclusion of 1 wt. % of HNTs into GLARE leads to maximum improvements of 35.67, 8.50, 28.85, 50.47, 50.27, 30.43, 23.73, 72.08, 30.74, and 51.52% in tensile strength, tensile strain, Young's modulus, modulus of toughness, flexural strength, flexural strain, in-plane shear strength, interlaminar shear strength, bearing strength, and impact strength, respectively, compared to pristine GLARE. An enhancement of 38.89% in the flexural modulus was attained by adding 0.5 wt. % of HNTs to GLARE compared to pristine GLARE. The tensile strength, tensile strain, modulus of toughness, flexural strength, flexural modulus, flexural strain, in-plane shear strength, and interlaminar shear strength of GLARE filled with 3 wt. % of HNTs are 0.91, 0.88, 0.91, 0.91, 0.71, 0.83, 0.85, and 0.91 times those of the original GLARE. But Young’s modulus, bearing strength, and impact strength are 1.10, 1.15 and 1.20 times those of the original GLARE. To investigate the fracture mechanism, field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) were used. The microscopic images revealed that adding HNTs lead to the improvement in the interaction between the epoxy matrix and glass fiber, thereby improving the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document