scholarly journals Seismic Behavior of RCS Composite Frame Structure with Rigidity Zone Factor Variations of Beam-Column Connections

2021 ◽  
Vol 27 (1) ◽  
pp. 41-50
Author(s):  
I Ketut Sudarsana ◽  
I Gede Adi Susila ◽  
Ni Wayan Sastraningsih

This research evaluated the effect of connection’s rigidity zone factors of RCS frame’s connections on the seismic behavior of regular RCS frames of a five-story office building located at seismic design category (SDC) of D. The variations on rigidity zone factors were 0, 0.25, 0.50, 0.75, and 1.0, respectively for Model MS, MSR025, MSR05 MSR075, and MR with the same elements’ dimension. A 3-D finite element modeling was conducted to do a linear elastic analysis for structural design and nonlinear static pushover analysis for evaluating the structural seismic performance. The results show that all models have met the strength and serviceability design limits. The seismic performances in terms of base shear, elastic stiffness, and ductility of all RCS models increased with an increase in the values of the rigidity zone factor. The structural performance level according to FEMA 440 was life safety (LS) for the Model MSR05, MSR075, and MR, while for the Model MS and MSR025 was collapse prevention (CP). The seismic energy dissipation for all RCS frames was an intermediate category indicated by the numbers of developed plastic hinges less than 20% of the total potential plastic hinges

Author(s):  
Omar Ahmad

In general, the buildings are designed based on the applied loads on them, and these buildings generally have elastic structural behaviour. However, these structures may be subjected to unexpectedly strong seismic forces that exceed their elastic limits. In order to find the rigidity and load-bearing trend of the building without the formation of plastic hinges and failure, pushover analysis should be performed. Pushover analysis is a non-linear static analysis in which the structure is subjected to lateral loads, so some parameters are recorded, such as failure, formation of plastic hinges, and yield. The elastic stiffness factor is the ability of a building to bear the loads on it before the failure and existent of the plastic hinges. In this study, pushover analysis had been done on 12 two-dimensional reinforced concrete frames with a different number of stories, different span lengths and with or without shear walls to find the effect of the span length, shear wall and the number of stories on the elastic stiffness factor. After performing the pushover analysis, the elastic stiffness factor had been evaluated from the pushover curve by dividing the base shear over the lateral displacement at the first point of the occurrence of the plastic hinge. The results obtained from the study showed that the elastic stiffness factor increases with the increase of the span length, while it decreases with the increase of the number of stories. As well, the frames with shear walls are stiffer than the frames without shear walls.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750041 ◽  
Author(s):  
Bo Di ◽  
Xueyi Fu

In this paper, the influence of foundation stiffness on the seismic behavior of shear wall-frame systems was investigated. First, a basic differential equation was established to account for the interaction between the foundation and superstructure. By solving the equation, the influence of foundation stiffness on the lateral stiffness, inter-story drift, and internal force distribution of the superstructure at the elastic stage was elucidated. Subsequently, the concept and method for determining the range of foundation stiffness suitable for shear wall-frame systems were proposed. By taking a 12-story shear wall-frame structure built on a shallow foundation as an example, a parametric study was performed for various frame-to-wall relative stiffness ratios and foundation stiffnesses. The effect of shallow foundation stiffness on the base shear distribution and energy dissipation of the superstructure was clarified, with results compared with those of the fixed-base model. The analysis results indicated that the degeneration of foundation stiffness due to earthquake damages will result in significant redistribution of internal forces, namely, the internal forces of the walls decrease, while those of the frames increase. In particular, the shear-force and bending moment of the bottom frame columns rise drastically, which may greatly reduce the safety margin and should be considered in practical design.


2014 ◽  
Vol 580-583 ◽  
pp. 1449-1457
Author(s):  
Wen Xia Yang ◽  
Qiang Gu ◽  
Ping Zhou Cao ◽  
Rong Jin Shi

In current seismic design procedure, structure base shear is calculated according to the linear elastic response spectra divided by the response modification factor, which accounts for ductility and overstrength of a structural system. In this paper, the response modification factors of Y-eccentric braced steel frames (YECBF) designed based on Chinese Code were evaluated by an improved pushover analysis on 12 examples with various stories and spans lengths. According to the analysis results, the effects of fundamental periods, storey numbers, and spans of frames on the behavior factor were studied. In the end, an appropriate response modification factor was proposed for YECBF designed base on Chinese Code.


2012 ◽  
Vol 594-597 ◽  
pp. 812-815
Author(s):  
Jing Li ◽  
Xing Hua Yu

The pushover analysis had been done for a R.C frame model, vertex displacement、base shear 、 appear order and development situation of plastic hinges of the model had been get in different steps of pushover analysis, The pictures of basal shear-vertex displacement and response spectrum displacement-accelerated speed had been studied. The analysis results show that ,the R.C frame model correspond with the seismic design principle of stronger column weaker beam ’,and meet the seismic requirements of the first stage and the calculating resistance to collapse of the second stage.


2014 ◽  
Vol 578-579 ◽  
pp. 354-358
Author(s):  
Jian Hua Shao ◽  
Bai Jie Tang

Based on the time-history analysis principle of bidirectional equivalent tension rod of steel shear wall in this paper, the theory of Incremental Dynamic Analysis (IDA) is used to investigate the real seismic behavior of steel frame-steel plate shear wall (SPSW) system under a large number of natural earthquake waves and artificial simulated earthquake waves with the gradually increased scale of seismic intensity in order to achieve the base shear-roof displacement (V-Δ) curve under each earthquake wave action. Based on the principle of unidirectional equivalent tension rod, the pushover analysis is also used to obtain the curve of base shear and roof displacement under two different loading modes of uniform distribution and inverted triangular distribution. Through the above two different methods of seismic behavior evaluation, the achieved conclusions are as follows: The most V-Δ envelope curves obtained by IDA analysis are between V-Δ envelope curves obtained by pushover analysis under these two loading modes of inverted triangular and uniform distribution. With the increase of structural storey, the effect of high order mode on seismic behavior is more and more obvious and the deviation of calculation results derived from pushover is bigger and bigger. As a result, pushover analysis is only applied to evaluate seismic performance of structure at the middle or low storey. For the pushover, the structural bearing capacity and initial stiffness is underestimated, but the structural deformation capacity is overestimated under inverted triangular loading mode, Whereas, it is the opposite situation under the uniform distribution.


Author(s):  
Mahmoud Alhassan ◽  
Mohamad Abdelrahim

This paper gives a short introduction about various kinds of analysis, plastic hinges, moment-resisting frames (MRFs) in RC Structures. It likewise gives computer software ETABS displaying and an investigation of structures concerning Pushover Analysis. The fundamental reason for this examination is to apply a push to all models, analyse and get a reasonable thought regarding their behaviour. The behaviour of these structures likewise was evaluated considering various variables such as the changes in the number of floors, spans length, reinforcements' yield strength and characteristic strength of concrete. This investigation incorporates the moment-resisting frames (MRFs) having 4, 7, and 10 storeys and a relative report for all models' outcomes. Pushover analysis is a nonlinear static analysis used to determine the relationship between strength and displacement in order to evaluate the performance of the RC frame structure. It was found that the plastic hinge may be assessed using parameters such as span lengths and the number of storeys. When the number of storeys increases, the elastic stiffness value decreases and when the span length increases the elastic stiffness also decreases. The collapse of members happens only when there is a formation of 3 hinge mechanisms. Plastic hinge colours have been given, and each colour has its significance to permit a good design.


2014 ◽  
Vol 894 ◽  
pp. 82-86
Author(s):  
Xiao Hong Zhou

In order to improve the seismic behavior of the reinforcement concrete frame, a frictional mortar-less panel (FMP) was researched. In this masonry, the bricks are built without mortar and the lateral capability is supported by the friction between bricks. FMP has less rigid in-plane contribution, and contribute mostly to the energy dissipation of structure. To investigate the seismic behavior of FMP, a simple finite element modeling method has been proposed and verified with ANSYS. After that, the FMP was infilled in a typical reinforcement concrete frame structure and a Taft wave has been applied to research on its seismic behavior. The horizontal displacement, story drift, acceleration and base shear/axial force of RC frame has been achieved, results showed the FMP has considerable benefit to the seismic behavior of RC frame structure and worth to be promoted.


2019 ◽  
Vol 2 (2) ◽  
pp. 134-140
Author(s):  
Agung Mardhika ◽  
Mochammad Afifuddin ◽  
Muttaqin Muttaqin

The influence of brick walls to performance of space frame is often being ignored, even though in this condition walls are participating in strengthen the building. Contribution of brick walls to performance of space frame structure with push over method goal is to know how the impact of walls in building structure performance which is being ignored all this time. Building of alumnus association was being modeled in two condition, first condition with the walls were being ignored and second condition with brick walls were modeled as a strut force. Modeling brick walls as strut alumnus association building Syiah Kuala university increased structure performance at this building. Modelling with brick walls as strut in pushover analysis x direction at MTS model minimize the displacement 6,36% from MTS model and increased building ability to accept base shear 301,71% from MTS model.   Modelling with brick walls as strut in analysis displacement at Y direction increase 4,38% from MTS model. This thing showed that walls impacted building performance in bearing base shear. Plastification condition structure element at X direction without strut modeling, there is 54 element which had already collapsed (collapse prevention) whereas at building with strut modelling has 6 element which already collapsed (collapsed prevention). Plastification condition element structure at Y direction in building without strut modelling has 14 element which already collapsed (collapsed prevention).


Buildings are designed in different methods for resisting the lateral loads, in which strong column weak beam concept is one of the methods of designing, this method is used to avoiding the global failure of the structure In this work 3bay 5 story RC frame building is consider for the analysis, the structures are design strong column weak beam with the help of static non-linear pushover analysis of RC frame building with increasing the percentage of column sizes 20%, 40%, 60%, 80% and 100%. By varying with percentage of columns resistances of structure is increased. The parameters base shear, story displacement, and hinge formations in the structure is obtained from this analysis. The base shear and displacement are increased by increasing the column sizes, these parameters are discussed the results in detail. Comparing the all six model results the base shear in increased by 266.64% when the column size is increased by 100%. From this analysis we can reduce the failure in the structure during the earthquake. Formation of plastic hinges in column changes to beam by increasing the column size, so increase the capacity of structure. The building is analyzed by using SAP2000.


Author(s):  
Khosro Zehro ◽  
Shahram Jkhsi

Nowadays, to analyse and determine the maximum seismic lateral displacement for reinforced concrete (RC) structures, the most applicable procedure used by structural engineers is the nonlinear static (pushover) analysis. The nonlinear static procedure (NSP) is a common approach for analysing the seismic performance of construction structures. By directing this procedure, the weak points in each structural member can be examined, and it also determines whether the members are safe or need to rehabilitate. This process defines the level of performance and shear strength under seismic diffusion to construct each element of the structure. The displacement, the base shear, the plastic hinge model, and the effect of the different plan on seismic response of structures has been reported. When concentrating on the RC structures, it requires the ability to conduct lateral resistant force systems, which one of them is commonly known as moment-resisting frames (MRFs). In this paper, three models of RC structures considered for low-, medium-, and high-rise buildings were examined, and each model has been analysed for three different spans. These models have been analysed applying ETABS software by inputting and examining a wide range of structural parameters. A comprehensive study on the pushover curve, performance curve, among others have been performed. The aim of this study is to consider the effect of plastic hinges in various ranges of performance capacities to evaluate the elastic stiffness factor of structures


Sign in / Sign up

Export Citation Format

Share Document