Response Modification Factor for Y-Eccentric-Braced Steel Frame Structures Designed Based on Chinese Code

2014 ◽  
Vol 580-583 ◽  
pp. 1449-1457
Author(s):  
Wen Xia Yang ◽  
Qiang Gu ◽  
Ping Zhou Cao ◽  
Rong Jin Shi

In current seismic design procedure, structure base shear is calculated according to the linear elastic response spectra divided by the response modification factor, which accounts for ductility and overstrength of a structural system. In this paper, the response modification factors of Y-eccentric braced steel frames (YECBF) designed based on Chinese Code were evaluated by an improved pushover analysis on 12 examples with various stories and spans lengths. According to the analysis results, the effects of fundamental periods, storey numbers, and spans of frames on the behavior factor were studied. In the end, an appropriate response modification factor was proposed for YECBF designed base on Chinese Code.

2011 ◽  
Vol 250-253 ◽  
pp. 2285-2290
Author(s):  
Wen Xia Yang ◽  
Qiang Gu ◽  
Zhen Sen Song

In current seismic design procedure, structural base shear is calculated according to the linear elastic response spectra divided by response modification factorR. The response modification factor is important to the reliability and economy of building seismic design. In this paper, the response modification factors of Twelve Y-eccentric braced steel frames with various stories and spans lengths were evaluated by capacity spectrum method based on the global capacity envelops obtained from an improved pushover analysis and incremental dynamic analysis. According to the results, an appropriate formula of the response modification factor for the Y-eccentric braced steel frames was suggested.


1989 ◽  
Vol 5 (3) ◽  
pp. 571-590 ◽  
Author(s):  
Rafael Riddell ◽  
Pedro Hidalgo ◽  
E. Cruz

Most recent seismic codes include response modification factors in the definition of the equivalent lateral forces that are used for the design of earthquake resistant buildings. The response modification factors (R) are used to reduce the linear elastic design spectrum to account for the energy dissipation capacity of the structure. The evaluation of these response modification factors for various sets of earthquake records and ductility factors is presented herein. Special attention is given to the short period range where the reduction of linear elastic response spectra is smaller than the values for intermediate and long period structures. An idealized and simple variation of the response modification factor as a function of the period of vibration, suitable for seismic codes formulation, is also presented.


2008 ◽  
Vol 24 (1) ◽  
pp. 139-171 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Yousef Bozorgnia

We present a new empirical ground motion model for PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01–10 s. The model was developed as part of the PEER Next Generation Attenuation (NGA) project. We used a subset of the PEER NGA database for which we excluded recordings and earthquakes that were believed to be inappropriate for estimating free-field ground motions from shallow earthquake mainshocks in active tectonic regimes. We developed relations for both the median and standard deviation of the geometric mean horizontal component of ground motion that we consider to be valid for magnitudes ranging from 4.0 up to 7.5–8.5 (depending on fault mechanism) and distances ranging from 0–200 km. The model explicitly includes the effects of magnitude saturation, magnitude-dependent attenuation, style of faulting, rupture depth, hanging-wall geometry, linear and nonlinear site response, 3-D basin response, and inter-event and intra-event variability. Soil nonlinearity causes the intra-event standard deviation to depend on the amplitude of PGA on reference rock rather than on magnitude, which leads to a decrease in aleatory uncertainty at high levels of ground shaking for sites located on soil.


Author(s):  
Baviskar Vinita

Earthquake is the most destructive natural hazard in the world. While designing any earthquake resistant structure, actual forces developed are much higher than designed forces. Therefore, to get design lateral force, the actual base shear force should be reduced by the factor known as response modification factor(R). Response modification factor plays vital role in seismic design of structures. Components of response modification factor (R) are ductility factor, over strength factor, redundancy factor and damping factor. Generally, value of response modification factor is adopted from seismic design codes of developed countries such as Europe, United States and India. Column is important part of Reinforced concrete building as overall load is transferred through column. Not only from aesthetical point of view, but also from structural aspect special shaped columns performs better than rectangular columns. So this study aims at calculating components of response modification factor(R) for column cross section with special shapes (L, T, +) for ‘X’ type bracing. In this study total 16 models of different number of storeys i.e. 5,10 are analysed using Pushover analysis for different seismic zones. The study also involves comparison of response modification factor (R) for structures designed with Indian code IS1893:2016(Part1) and American code ASCE 7-16.


2016 ◽  
Author(s):  
Roberto Aguiar ◽  
Alicia Rivas-Medina ◽  
Pablo Caiza ◽  
Diego Quizanga

Abstract. The Metropolitan District of Quito is divided into five areas: south, south-central, central, north-central and north. It is located on or very close to segments of reverse blind faults: Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla as indicated in Alvarado et al. (2014), making it one of the most seismically dangerous cities in the world. For each of the urban areas of Quito, elastic response spectra are presented in this paper, which are found using some of the new models of the PEER's NGA-West2 Program, models developed by: Abrahamson et al. (2013), Campbell and Borzognia (2013), and Chiou and Youngs (2013). These spectra are calculated considering the maximum amount that could be generated by the rupture of each fault segments, and taking into account the soil type that exists in each zone according to the Norma Ecuatoriana de la Construcción 2015 (NEC-15). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate), and considering that the fault can break in earthquakes of magnitude less than the expected maximum (minimum size 5.0 Mw). For this, the pattern of recurrence of type GR earthquakes (Gutenberg and Richter, 1944) with double truncation magnitude (Mmin and Mmax) proposed by Cosentino et al. (1977) is used.


2015 ◽  
Vol 744-746 ◽  
pp. 890-893
Author(s):  
Xun Wu ◽  
Yong Lan Zhang

In this paper, SAP2000 and ANSYS software are used to modeling and analysis athree-span continuous beam bridge with high piers case study.By using differentbearing types and combinations to form different options, create two finiteelement models.Analysis dynamic characteristics ,elastic response spectra,linear time history and nonlinear time history .And focus on comparing dynamiccharacteristics of the earthquake response of the two programs .Running outputdata processing and comparison results show that the application of thedifferent parameters of the rational combination of rubber bearing basin bridgearrangement has better seismic performance.


2016 ◽  
Vol 847 ◽  
pp. 281-289
Author(s):  
Erkan Senol ◽  
Ismail Kose ◽  
Bilge Doran ◽  
Pelin Elif Mezrea ◽  
Bulent Akbas

Adding braces to moment frames is considered to be quite an efficient technique for increasing the global stiffness and strength of the structure. It has not only been used in steel moment frames, but also in reinforced concrete (RC) moment frames in recent years. It certainly can increase the energy absorption capacity of structures and also decrease the demand imposed by seismic ground motions. Steel braces are anchored firmly to boundary beams and columns. They are modeled as truss elements and increase earthquake resistance of the building. Buckling restrained braced frames (BRBFs) in which members yield under both tension and compression without significant buckling have been used in recent years in order to ensure the desired seismic performance of special concentrically braced frames. BRBFs are similar to the special concentrically braced frames in that seismic accelerations are resisted by a building-frame members and diagonal braces whereas the design procedure is different. BRBs should be designed to permit ductile yielding both in compression and tension. In this paper, flat-slab RC building with two different configurations of buckling restraint braces (BRBs) is studied. The buildings have 4-storey with 5 bays in both X-and Y-directions and have been designed according to Turkish Specification of Reinforced Concrete Design (TS 500). In order to explore overall behavior up to failure and lateral load resisting capacities for these buildings, nonlinear static analyses have then been performed using SAP 2000-V14.1. Pushover analysis under constant gravity loads and monotonically increasing lateral forces during an earthquake until a target displacement is reached is generally carried out as an effective tool for performance based design. The major outcome of a pushover analysis is the capacity curve which shows the base shear vs. the roof displacement relationship and represents the overall performance of the building. The results of the analyses are presented in terms of capacity curve and energy dissipation.


10.29007/q8wl ◽  
2018 ◽  
Author(s):  
Nirav K. Patel ◽  
Prutha Vyas

Conventional seismic analysis of structure incorporates only elastic response of the structure. To understand nonlinear response of the structure, Performance Based Design (PBD) approach is widely used. PBD includes Pushover analysis i.e. nonlinear static analysis, which shows the post-elastic behaviour of the structure. IS 1893-2002 incorporates the nonlinear response of a structure considering response reduction factor (R) so that a linear elastic force based approach can be used for design. The response modification factor plays a key role in the seismic design of new buildings. However, the Indian code does not provide information on the components of R factor. The values assigned to this factor is based on engineering judgment. The study includes the calculation of value R based on different components as per ATC-19 and compares values of R for Special Moment resisting frame (SMRF) and Ordinary Moment resisting frames (OMRF) for two different seismic zones. An improvement in the reliability of modern earthquake-resistant buildings will require the systematic evaluation of the building response characteristics, which mostly affects the values assigned to the factor.


1993 ◽  
Vol 64 (2) ◽  
pp. 119-137 ◽  
Author(s):  
Glenn L. Greig ◽  
Gail M. Atkinson

Abstract We compare the damage potential of three recent eastern North American (ENA) earthquakes (Nahanni, 1985; Saguenay, 1988; and Mont Laurier, 1990) to that of the 1989 Loma Prieta, California earthquake. The Saguenay and Mont Laurier events were noteworthy due to their unusually high stress drops. The comparisons are based on synthetic ground motion records generated by the stochastic method, using source and attenuation models that were derived from actual records for each event. Damage potential is characterized by inelastic strength demand spectra, obtained by analyzing the response of nonlinear oscillators to each record. There is a strong similarity between the inelastic spectra and the more familiar elastic response spectra, although some significant differences are observed. Comparisons between events show that a moderate high-stress ENA earthquake, like Saguenay, can be as damaging to high-frequency structures as a major California earthquake.


Sign in / Sign up

Export Citation Format

Share Document