scholarly journals Effects of long-term anti-ischemic drug treatment on Na,K-ATPase isoforms in cardiomyopathic hamsters

2021 ◽  
Vol 67 (2) ◽  
pp. 76-82
Author(s):  
Jean Michel Maixent ◽  
Sandrine V. Pierre ◽  
Stéphane Sadrin ◽  
Régis Guieu ◽  
Franck Paganelli

We investigated the effects of long-term anti-ischemic therapy with trimetazidine on Na,K-ATPase (NKA) activity and protein expression in cardiomyopathy. NKA isoforms in membrane fractions from cardiomyopathic hamsters of the BIO 14.6 strain were studied and compared with those from healthy Syrian golden hamsters (F1B). Trimetazidine was orally administered to a subset of cardiomyopathic hamsters in the early stage of active disease (30 days) until the congestive stage (350 days). In the congestive stage of cardiac failure, the cardiomyopathic hamsters displayed altered NKA activity (-55 % vs. F1B; p<0.01), which was related to a specific decrease in abundance of the membrane NKA ?1 isoform (-27 % vs. F1B). Trimetazidine partially prevented the cardiomyopathy-induced changes in NKA activity (+38 %) and ?1 membrane expression (+ 66 %) without inducing changes in the expression of the ?2 isoform or 1 isoform of NKA. Cardiac hypertrophy and remodeling were reduced after trimetazidine treatment. Additionally, the abundance of NKA ?1 in membranes was negatively correlated with the ventricular weight/body weight ratio (an index of cardiac hypertrophy) (r2 = 0.99; p<0.0015). These findings suggest that some of the cardioprotective effect of trimetazidine during long-term cardiomyopathy may be achieved via regulation of cardiac remodeling and selective modulation cardiac NKA isoforms.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rong Wu ◽  
David Yin ◽  
Nataliya Sadekova ◽  
Christian F. Deschepper ◽  
Jacques de Champlain ◽  
...  

Objective. To evaluate the capacity of chronic ASA therapy to prevent cardiac alterations and increased oxidative stress in cardiomyopathic hamsters.Methods and Results. Male Syrian cardiomyopathic and age-matched inbred control hamsters received ASA orally from the age of 60 days. Animals were sacrificed at the age of 150, 250, and 350 days to evaluate the time course of cardiac hypertrophy and cardiovascular tissue superoxide anion (O2-) production. At the age of 150 days, the ventricular weight over body weight ratio, resting heart rate, and cardiovascularO2-production were much higher in cardiomyopathic hamsters than those in control. At the age of 250 days, in addition to the continual deterioration of these parameters with age, the blood pressure started to fall and the signs of heart failure appeared. In these cardiomyopathic hamsters, chronic ASA treatment (a) completely prevented elevatedO2-production and the NAD(P)H oxidase activity, (b) significantly slowed down the development of the cardiac hypertrophy and fibrosis.Conclusions. Chronic ASA treatment significantly prevents the deterioration of cardiac function and structure as well as the increased oxidative stress in the cardiomyopathic hamster. Our findings suggest that ASA presents a therapeutic potential to prevent cardiac dysfunction.


2014 ◽  
Vol 98 ◽  
pp. 612-613
Author(s):  
A. Akdur ◽  
M. Kirnap ◽  
E. Kolsarici ◽  
S. Yildirim ◽  
G. Moray ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1712-H1720 ◽  
Author(s):  
Yuehua Li ◽  
Tuanzhu Ha ◽  
Xiang Gao ◽  
Jim Kelley ◽  
David L. Williams ◽  
...  

In the present study, we examined whether NF-κB activation is required for cardiac hypertrophy in vivo. Cardiac hypertrophy in rats was induced by aortic banding for 1, 3, and 5 days and 1–6 wk, and age-matched sham-operated rats served as controls. In a separate group of rats, an IκB-α dominant negative mutant (IκB-αM), a superrepressor of NF-κB activation, or pyrrolidinedithiocarbamate (PDTC), an antioxidant that can inhibit NF-κB activation, was administered to aortic-banded rats for 3 wk. The heart weight-to-body weight ratio was significantly increased at 5 days after aortic banding, peaked at 4 wk, and remained elevated at 6 wk compared with age-matched sham controls. Atrial natriuretic peptide and brain natriuretic peptide mRNA expressions were significantly increased after 1 wk of aortic banding, reached a maximum between 2 and 3 wk, and remained increased at 6 wk compared with age-matched sham controls. NF-κB activity was significantly increased at 1 day, reached a peak at 3 wk, and remained elevated at 6 wk, and IKK-β activity was significantly increased at 1 day, peaked at 5 days, and then decreased but remained elevated at 6 wk after aortic banding compared with age-matched sham controls. Inhibiting NF-κB activation in vivo by cardiac transfection of IκB-αM or by PDTC treatment significantly attenuated the development of cardiac hypertrophy in vivo with a concomitant decrease in NF-κB activity. Our results suggest that NF-κB activation is required for the development of cardiac hypertrophy in vivo and that NF-κB could be an important target for inhibiting the development of cardiac hypertrophy in vivo.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kisuk Min ◽  
Yan Huang ◽  
Frank J Giordano ◽  
Sudip Bajpeyi ◽  
Anton M Bennett

Introduction: Cardiac remodeling occurs in response to pathological stimuli including chronic pressure overload, subsequently leading to heart failure. Despite considerable research efforts, the molecular mechanisms responsible for heart failure have yet to be fully elucidated. One of the prominent signaling pathways involved in the development of pathological cardiac hypertrophy is the mitogen-activated protein kinases (MAPKs) pathways. The MAPKs are inactivated by the MAPK phosphatases (MKPs) through direct dephosphorylation. Growing evidence suggests the importance of MKP-5 signaling mechanisms in physiological and pathological processes. However, the role of MKP-5 has not been explored in cardiac muscle. The objective of this study is to investigate how MKP-5-mediated MAPK activity contributes to mechanisms responsible for pressure overload-induced cardiac hypertrophy. Hypothesis: We tested the hypothesis that MKP-5 serves as a central regulator of MAPKs in pressure overload-induced cardiac hypertrophy. Methods: To investigate the role of MKP-5 in cardiac muscle, we caused pressure overload-induced cardiac hypertrophy in wild type (mkp-5 +/+ ) mice and MKP-5 deficient mice (mkp-5 -/- ) through transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiographic analysis at 4 weeks after TAC. Cardiac hypertrophy was measured by heart-to-body weight ratio. Interstitial myocardial fibrosis was evaluated by Sirius red stains and expression of fibrogenic genes was determined by quantitative PCR. Results: Echocardiographic analysis showed that the ejection fraction and fractional shortening of mkp-5 +/+ mice significantly decreased by at 4 weeks after TAC. Heart-to-body weight ratio increased in mkp-5 +/+ mice. However, MKP-5-deficient heart was protected from cardiac dysfunction and cardiac hypertrophy induced by TAC. Importantly, the fibrogenic genes were markedly reduced in mkp-5 -/- mice as compared with mkp-5 +/+ mice at 4 weeks after TAC. Conclusions: Collectively, our study demonstrates that MKP-5 deficiency prevents the heart from pressure overload-induced cardiac hypertrophy and suggests that MKP-5 may serve as a novel therapeutic target for treatment of heart disease.


1997 ◽  
Vol 136 (6) ◽  
pp. 656-660 ◽  
Author(s):  
Cipriano Garcia del Rio ◽  
María Rosario R Moreno ◽  
Antonio Osuna ◽  
Juan de Dios Luna ◽  
Joaquín García-Estañ ◽  
...  

Abstract Objective: We evaluated the influence of chronic blockade of the renin-angiotensin system on hypertension induced by long-term thyroxine (T4) administration. To this end, we determined the effects of chronic treatment with captopril on blood pressure, cardiac hypertrophy and other renal and metabolic variables of hypertensive hyperthyroid rats. Methods: T4 was administered s.c. at 0·38 μmol/kg per day and captopril was given in the drinking water (1·38 mmol/l). Both treatments were maintained for 6 weeks. Control rats received tap water. After the treatment period, the rats were placed in metabolic cages. Later, blood pressure was measured in conscious rats by intra-arterial determination. Results: T4-treated rats showed an increased mean arterial pressure (MAP) whereas, in rats treated with T4 plus captopril, MAP was similar to that of the control group. Captopril did not affect the increased heart rate or ventricular weight/body weight ratio of hyperthyroid rats, but it improved the reduced creatinine clearance of these animals. Conclusions: The elevation in blood pressure produced by long-term T4 administration was prevented by chronic blockade of the renin-angiotensin system. Captopril improved the renal function of hyperthyroid rats, but did not affect the relative cardiac hypertrophy of these animals. European Journal of Endocrinology 136 656–660


1984 ◽  
Vol 62 (9) ◽  
pp. 1141-1146 ◽  
Author(s):  
Qian Tang ◽  
Paul B. Taylor

Cardiac hypertrophy was induced in adult female Wistar rats after 8 days of daily subcutaneous injections of isoproterenol (ISO). Regression from hypertrophy was studied following 1, 2, 4, 8, 12, and 20 days of ISO withdrawal. After 8 days of treatment cardiac mass increased 40%. Following ISO withdrawal, ventricular regression occurred during the first 8 days. After 12–20 days of recovery, a new steady-state heart weight to body weight ratio was established that was 12–13% above the controls. The half-time recovery for heart weight was 3.8 days. Ventricular RNA content was stimulated 76% after 8 days of ISO-induced hypertrophy. During regression RNA content decreased rapidly during the first 8 days with a half-time of 3.4 days. Following 20 days of recovery ventricular RNA was still 31% above the controls. However, myocyte RNA was stimulated 86% following 8 days of ISO treatment and returned to control level after 12 days of regression. Myocardial DNA was increased 23% in the hypertrophied hearts and did not change during the recovery period. Hydroxyproline was increased in the ISO-treated hearts and decreased only slightly during the recovery interval. These data indicate that ISO-induced hypertrophy was reversible while ventricular RNA content only partially recovered. Nevertheless, myocyte RNA showed a large stimulation that was completely reversible at least after 12 days of recovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Zhang ◽  
Zhiying Zhang ◽  
Pengxiang Wang ◽  
Yiwei Han ◽  
Lijun Liu ◽  
...  

Bawei Chenxiang Wan (BCW), a well-known traditional Chinese Tibetan medicine formula, is effective for the treatment of acute and chronic cardiovascular diseases. In the present study, we investigated the effect of BCW in cardiac hypertrophy and underlying mechanisms. The dose of 0.2, 0.4, and 0.8 g/kg BCW treated cardiac hypertrophy in SD rat model induced by isoprenaline (ISO). Our results showed that BCW (0.4 g/kg) could repress cardiac hypertrophy, indicated by macro morphology, heart weight to body weight ratio (HW/BW), left ventricle heart weight to body weight ratio (LVW/BW), hypertrophy markers, heart function, pathological structure, cross-sectional area (CSA) of myocardial cells, and the myocardial enzymes. Furthermore, we declared the mechanism of BCW anti-hypertrophy effect was associated with activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator–activated receptor-α (PPAR-α) signals, which regulate carnitine palmitoyltransferase1β (CPT-1β) and glucose transport-4 (GLUT-4) to ameliorate glycolipid metabolism. Moreover, BCW also elevated mitochondrial DNA-encoded genes of NADH dehydrogenase subunit 1(ND1), cytochrome b (Cytb), and mitochondrially encoded cytochrome coxidase I (mt-co1) expression, which was associated with mitochondria function and oxidative phosphorylation. Subsequently, knocking down AMPK by siRNA significantly can reverse the anti-hypertrophy effect of BCW indicated by hypertrophy markers and cell surface of cardiomyocytes. In conclusion, BCW prevents ISO-induced cardiomyocyte hypertrophy by activating AMPK/PPAR-α to alleviate the disturbance in energy metabolism. Therefore, BCW can be used as an alternative drug for the treatment of cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document