Abstract 16205: MKP-5 Deficiency Attenuates Pressure Overload-induced Cardiac Hypertrophy

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kisuk Min ◽  
Yan Huang ◽  
Frank J Giordano ◽  
Sudip Bajpeyi ◽  
Anton M Bennett

Introduction: Cardiac remodeling occurs in response to pathological stimuli including chronic pressure overload, subsequently leading to heart failure. Despite considerable research efforts, the molecular mechanisms responsible for heart failure have yet to be fully elucidated. One of the prominent signaling pathways involved in the development of pathological cardiac hypertrophy is the mitogen-activated protein kinases (MAPKs) pathways. The MAPKs are inactivated by the MAPK phosphatases (MKPs) through direct dephosphorylation. Growing evidence suggests the importance of MKP-5 signaling mechanisms in physiological and pathological processes. However, the role of MKP-5 has not been explored in cardiac muscle. The objective of this study is to investigate how MKP-5-mediated MAPK activity contributes to mechanisms responsible for pressure overload-induced cardiac hypertrophy. Hypothesis: We tested the hypothesis that MKP-5 serves as a central regulator of MAPKs in pressure overload-induced cardiac hypertrophy. Methods: To investigate the role of MKP-5 in cardiac muscle, we caused pressure overload-induced cardiac hypertrophy in wild type (mkp-5 +/+ ) mice and MKP-5 deficient mice (mkp-5 -/- ) through transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiographic analysis at 4 weeks after TAC. Cardiac hypertrophy was measured by heart-to-body weight ratio. Interstitial myocardial fibrosis was evaluated by Sirius red stains and expression of fibrogenic genes was determined by quantitative PCR. Results: Echocardiographic analysis showed that the ejection fraction and fractional shortening of mkp-5 +/+ mice significantly decreased by at 4 weeks after TAC. Heart-to-body weight ratio increased in mkp-5 +/+ mice. However, MKP-5-deficient heart was protected from cardiac dysfunction and cardiac hypertrophy induced by TAC. Importantly, the fibrogenic genes were markedly reduced in mkp-5 -/- mice as compared with mkp-5 +/+ mice at 4 weeks after TAC. Conclusions: Collectively, our study demonstrates that MKP-5 deficiency prevents the heart from pressure overload-induced cardiac hypertrophy and suggests that MKP-5 may serve as a novel therapeutic target for treatment of heart disease.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ning Zhou ◽  
Xin Chen ◽  
Jing Xi ◽  
Ben Ma ◽  
Christiana Leimena ◽  
...  

Abstract Pressure overload-induced cardiac hypertrophy, such as that caused by hypertension, is a key risk factor for heart failure. However, the underlying molecular mechanisms remain largely unknown. We previously reported that the valosin-containing protein (VCP), an ATPase-associated protein newly identified in the heart, acts as a significant mediator of cardiac protection against pressure overload-induced pathological cardiac hypertrophy. Still, the underlying molecular basis for the protection is unclear. This study used a cardiac-specific VCP transgenic mouse model to understand the transcriptomic alterations induced by VCP under the cardiac stress caused by pressure overload. Using RNA sequencing and comprehensive bioinformatic analysis, we found that overexpression of the VCP in the heart was able to normalize the pressure overload-stimulated hypertrophic signals by activating G protein-coupled receptors, particularly, the olfactory receptor family, and inhibiting the transcription factor controlling cell proliferation and differentiation. Moreover, VCP overexpression restored pro-survival signaling through regulating alternative splicing alterations of mitochondrial genes. Together, our study revealed a novel molecular regulation mediated by VCP under pressure overload that may bring new insight into the mechanisms involved in protecting against hypertensive heart failure.


2019 ◽  
Vol 116 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Hairuo Lin ◽  
Yang Li ◽  
Hailin Zhu ◽  
Qiancheng Wang ◽  
Zhenhuan Chen ◽  
...  

Abstract Aims Proton pump inhibitors (PPIs) are widely used in patients receiving percutaneous coronary intervention to prevent gastric bleeding, but whether PPIs are beneficial for the heart is controversial. Here, we investigated the effects of lansoprazole on cardiac hypertrophy and heart failure, as well as the underlying mechanisms. Methods and results Adult male C57 mice were subjected to transverse aortic constriction (TAC) or sham surgery and then were treated with lansoprazole or vehicle for 5 weeks. In addition, cultured neonatal rat ventricular cardiomyocytes and fibroblasts were exposed to angiotensin II in the presence or absence of lansoprazole. At 5 weeks after TAC, the heart weight/body weight ratio was lower in lansoprazole-treated mice than in untreated mice, as was the lung weight/body weight ratio, while left ventricular (LV) fractional shortening and the maximum and minimum rates of change of the LV pressure were higher in lansoprazole-treated mice, along with less cardiac fibrosis. In cultured cardiomyocytes, lansoprazole inhibited angiotensin II-induced protein synthesis and hypertrophy, as well as inhibiting proliferation of fibroblasts. Lansoprazole decreased myocardial levels of phosphorylated Akt, phosphorylated glycogen synthase kinase 3β, and active β-catenin in TAC mice and in angiotensin II-stimulated cardiomyocytes. After overexpression of active β-catenin or knockdown of H+/K+-ATPase α-subunit, lansoprazole still significantly attenuated myocyte hypertrophy. Conclusion Lansoprazole inhibits cardiac remodelling by suppressing activation of the Akt/GSK3β/β-catenin pathway independent of H+/K+-ATPase inhibition, and these findings may provide a novel insight into the pharmacological effects of PPIs with regard to alleviation of cardiac remodelling.


1994 ◽  
Vol 266 (6) ◽  
pp. H2468-H2475 ◽  
Author(s):  
H. A. Rockman ◽  
S. P. Wachhorst ◽  
L. Mao ◽  
J. Ross

There is increasing evidence that the renin-angiotensin system may play a important role in cardiac hypertrophy. To assess the role of angiotensin II in the induction of cardiac hypertrophy, three groups of adult mice were subjected to left ventricular pressure overload by transverse aortic constriction (TAC). For the next 7 days the groups received either the specific angiotensin II subtype 1 receptor (AT1) antagonist (losartan, 1.05 g/l; n = 17), an angiotensin enzyme inhibitor (captopril, 2 g/l; n = 17), or no treatment (n = 22) administered in the drinking water and compared with three similarly treated sham-operated groups (n = 7 each). TAC resulted in a significant increase in heart weight-to-body weight ratio (0.634 +/- 0.087 vs. 0.525 +/- 0.039, g/g x 100, P < 0.05), which was prevented by losartan (0.506 +/- 0.069, g/g x 100, P < 0.0001) despite similar hemodynamic load (proximal systolic pressure 146 +/- 31 vs. 136 +/- 32 mmHg, untreated vs. losartan, P = NS). Proximal systolic pressure was positively correlated with the development of ventricular hypertrophy. In the presence of AT1-receptor blockade, the increase in heart weight-to-body weight ratio at any given systolic pressure was significantly attenuated compared with untreated TAC mice. The increase in heart weight-to-body weight ratio was also significantly attenuated by captopril compared with untreated banded controls (0.542 +/- 0.091, g/g x 100, P = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 115 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Andrea Grund ◽  
Malgorzata Szaroszyk ◽  
Janina K Döppner ◽  
Mona Malek Mohammadi ◽  
Badder Kattih ◽  
...  

Abstract Aims Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Hongliang Li ◽  
Peng Zhang

TRAF associated NF-κB activator (TANK) is adaptor protein which was identified as a negative regulator of TRAF-, TBK1- and IKKi-mediated signal transduction through its interaction with them. Besides its important roles in the regulation of immune response, it has been reported that TANK contributes to the development of autoimmune nephritis and osteoclastogenesis. However, its functions in cardiovascular diseases especially cardiac hypertrophy is largely unknown. In the present study, we interestingly observed that TNAK expression is increased by 240% in human hypertrophic cardiomyopathy(HCM)tissue and 320% in mouse hypertrophic heart after aortic banding (AB), indicating that TANK may be involved in the pathogenesis of this diseases. Subsequently, cardiac-specific TANK knockout (TANK-KO) and transgenic(TANK-TG)mice were generated and subjected to AB for 4 to 8 weeks. Our results demonstrated that TANK deficiency prevented against cardiac hypertrophy and fibrosis induced by pressure overload,as evidenced by that the cardiomyocytes enlargement and fibrosis formation was reduced by about 34% and 43% compared with WT mice, respectively. Conversely, TANK-TG mice showed an aggravated effect on cardiac hypertrophy in response to pressure overload with 36% and 47% increase of cardiomyocytes enlargement and fibrosis formation compared with non-transgenic mice. More importantly, in vitro experiments further revealed that TANK overexpression which was mediated by adenovirus in the cardiomyocytes dramatically increased the cell size and the expression of hypertrophic markers, whereas TANK knockdown had an opposite function. Mechanistically, we discovered that AKT signaling was activated (230%) in the hearts of TANK-TG mice, while being greatly reduced in TNAK-KO hearts after aortic banding. Moreover, blocking AKT/GSK3β signaling with a pharmacological AKT inhibitor reversed cardiac dysfunction of TANK-TG mice. Collectively, our data show that TNAK acts as a novel regulator of pathological cardiac hypertrophy and may be a promising therapeutic targets.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Davy Vanhoutte ◽  
Jop Van Berlo ◽  
Allen J York ◽  
Yi Zheng ◽  
Jeffery D Molkentin

Background. Small GTPase RhoA has been previously implicated as an important signaling effector within the cardiomyocyte. However, recent studies have challenged the hypothesized role of RhoA as an effector of cardiac hypertrophy. Therefore, this study examined the in vivo role of RhoA in the development of pathological cardiac hypertrophy. Methods and results . Endogenous RhoA protein expression and activity levels (GTP-bound) in wild-type hearts were significantly increased after pressure overload induced by transverse aortic constriction (TAC). To investigate the necessity of RhoA within the adult heart, RhoA-LoxP-targeted (RhoA flx/flx ) mice were crossed with transgenic mice expressing Cre recombinase under the control of the endogenous cardiomyocyte-specific β-myosin heavy chain (β-MHC) promoter to generate RhoA βMHC-cre mice. Deletion of RhoA with β-MHC-Cre produced viable adults with > 85% loss of RhoA protein in the heart, without altering the basic architecture and function of the heart compared to control hearts, at both 2 and 8 months of age. However, subjecting RhoA βMHC-cre hearts to 2 weeks of TAC resulted in marked increase in cardiac hypertrophy (HW/BW (mg/g): 9.5 ± 0.3 for RhoA βMHC-cre versus 7.7 ± 0.4 for RhoA flx/flx ; and cardiomyocyte size (mm 2 ): 407 ± 21 for RhoA βMHC-cre versus 262 ± 8 for RhoA flx/flx ; n ≥ 8 per group; p<0.01) and a significantly increased fibrotic response. Moreover, RhoA βMHC-cre hearts transitioned more quickly into heart failure whereas control mice maintained proper cardiac function (fractional shortening (%): 23.3 ± 1.2 for RhoA βMHC-cre versus 29.3 ± 1.2 for RhoA flx/flx ; n ≥ 8 per group; p<0.01; 12 weeks after TAC). The latter was further associated with a significant increase in lung weight normalized to body weight and re-expression of the cardiac fetal gene program. In addition, these mice also displayed greater cardiac hypertrophy in response to 2 weeks of angiotensinII/phenylephrine infusion. Conclusion. These data identify RhoA as an antihypertrophic molecular switch in the mouse heart.


1994 ◽  
Vol 266 (2) ◽  
pp. H749-H756
Author(s):  
F. Tomita ◽  
A. L. Bassett ◽  
R. J. Myerburg ◽  
S. Kimura

Sarcoplasmic reticulum (SR) Ca2+ uptake is reduced in the hypertrophied ventricle. To determine whether events initiated by beta-adrenergic stimulation are involved, we compared the effects of adenosine 3',5'-cyclic monophosphate (cAMP) on SR Ca2+ uptake between normal and pressure-overloaded hypertrophied hearts using saponin-skinned rat left ventricular muscles. Left ventricular pressure overload was induced by partial ligation of the abdominal aorta for 4–6 wk before study. Age-matched normal rats served as controls. Pressure overload increased the left ventricular weight-to-body weight ratio 60.8%. The SR was loaded by exposing the muscles to 10(-6) M Ca2+ solution; SR Ca2+ release was induced by 5 or 25 mM caffeine, and the amount of Ca2+ released from the SR was estimated by the area under the caffeine-induced transient contraction. Concomitant exposure to 10(-4) M cAMP did not influence caffeine-induced Ca2+ release in either normal or hypertrophied fibers. When 10(-4) M cAMP was applied during the Ca(2+)-loading periods, the amount of Ca2+ accumulated by the SR increased in both normal and hypertrophied fibers. However, the extent of increase was significantly smaller in hypertrophied fibers than in normal fibers [10.9 +/- 1.7 and 27.4 +/- 5.3% in 1 min of Ca2+ loading (P < 0.05), 12.2 +/- 3.2 and 24.7 +/- 3.8% in 4 min of Ca2+ loading (P < 0.05), respectively]. cAMP (10(-4) M) shifted the force-pCa relationship to the right similarly in normal and hypertrophied muscles, and there was no difference in the force-pCa relationship between the two groups either with or without cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 298 (6) ◽  
pp. H2082-H2092 ◽  
Author(s):  
Yonggang Liu ◽  
Man Yu ◽  
Ling Wu ◽  
Michael T. Chin

Cardiac hypertrophy is a common response to hemodynamic stress in the heart and can progress to heart failure. To investigate whether the transcription factor cardiovascular basic helix-loop-helix factor 1/hairy/enhancer of split related with YRPW motif 2 (CHF1/Hey2) influences the development of cardiac hypertrophy and progression to heart failure under conditions of pressure overload, we performed aortic constriction on 12-wk-old male wild-type (WT) and heterozygous (HET) mice globally underexpressing CHF1/Hey2. After aortic banding, WT and HET mice showed increased cardiac hypertrophy as measured by gravimetric analysis, as expected. CHF1/Hey2 HET mice, however, demonstrated a greater increase in the ventricular weight-to-body weight ratio compared with WT mice ( P < 0.05). Echocardiographic measurements showed a significantly decreased ejection fraction compared with WT mice ( P < 0.05). Histological examination of Masson trichrome-stained heart tissue demonstrated extensive fibrosis in HET mice compared with WT mice. TUNEL staining demonstrated increased apoptosis in HET hearts ( P < 0.05). Exposure of cultured neonatal myocytes from WT and HET mice to H2O2 and tunicamycin, known inducers of apoptosis that work through different mechanisms, demonstrated significantly increased apoptosis in HET cells compared with WT cells ( P < 0.05). Expression of Bid, a downstream activator of the mitochondrial death pathway, was expressed in HET hearts at increased levels after aortic banding. Expression of GATA4, a transcriptional activator of cardiac hypertrophy, was also increased in HET hearts, as was phosphorylation of GATA4 at Ser105. Our findings demonstrate that CHF1/Hey2 expression levels influence hypertrophy and the progression to heart failure in response to pressure overload through modulation of apoptosis and GATA4 activity.


2021 ◽  
Author(s):  
Zhiyu Dai ◽  
Jianding Cheng ◽  
Bin Liu ◽  
Dan Yi ◽  
Anlin Feng ◽  
...  

Cardiac hypertrophy and fibrosis are common adaptive responses to injury and stress, eventually leading to heart failure. Hypoxia signaling is important to the (patho)physiological process of cardiac remodeling. However, the role of endothelial Prolyl-4 hydroxylase 2 (PHD2)/hypoxia inducible factors (HIFs) signaling in the pathogenesis of heart failure remains elusive. We observed a marked decrease of PHD2 expression in heart tissues and cardiovascular endothelial cells from patients with cardiomyopathy. Mice with Tie2-Cre-mediated deletion of Egln1 (encoding PHD2) or tamoxifen-induced endothelial Egln1 deletion exhibited left ventricular hypertrophy and cardiac fibrosis. Genetic ablation and pharmacological inhibition of Hif2a but not Hif1a in endothelial Egln1 deficient mice normalized cardiac size and function. The present studies define for the first time an unexpected role of endothelial PHD2 deficiency in inducing cardiac hypertrophy and fibrosis in a HIF-2α dependent manner. Targeting PHD2/HIF-2α signaling may represent a novel therapeutic approach for the treatment of pathological cardiac hypertrophy and failure.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Mengfei Cao ◽  
Wei Yuan ◽  
Meiling Peng ◽  
Ziqi Mao ◽  
Qianru Zhao ◽  
...  

Abstract Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document