scholarly journals A comparative study of cellulase production in inorganic and organic supplements by a cellulolytic tree bark fungus

2020 ◽  
Vol 7 (2) ◽  
pp. 227-232
Author(s):  
V Vijeetha ◽  
A Jayakumaran Nair

The study was conducted to compare the cellulase production using organic and inorganic supplements by isolating a tree bark (Mangifera indica) fungus, for a cost-effective cellulase production. Three fungi (f1, f2 and f3) were isolated from the bark of the tree, of which f3 was found to be potential in cellulase production which was confirmed by primary screening (congo red activity staining). Through endoglucanase and total cellulase activity assays, it was observed that the isolated strain exhibited cellulase activity of 0.25 U/ml for endoglucanase when 1% CMC was supplemented to the medium. An activity of 8 IU/g towards FPase and for endoglucanase 10.35 U/g was obtained on non-purified inorganic supplements. Sugarcane bagasse was found to be the best inorganic supplement for cellulase production. Here, we try to adopt a cost-effective production strategy of cellulase. The future perspective of this investigation is to identify the strain and purification of the enzyme for industrial purpose.

2021 ◽  
Vol 4 (3) ◽  
pp. 1-3
Author(s):  
Sohail Khan ◽  
Ashwani Mathur

The growing demand and application of industrially important enzyme necessitate the need to explore new sources with diverse enzymes ranging in their specificity and activities. Enzymes are safe alternatives to chemical synthesis due to minimum side effect and ease of manufacturing. Solid state fermentation (SSF) is a cost-effective alternative to submerged fermentation with agro-residues or waste, often being used as substrate for growing diverse organisms for production of metabolites. Current study is one of the scarce report on exploring alpha amylase and cellulase production ability Aspergillus ochraceus (MTCC 1877) using wheat bran as substrate at relative humidity of 90% and at 30 ºC, for 7 days. Result showed the potential of Aspergillus ochraceus (MTCC 1877), as potential source of the two enzymes. Results revealed comparatively higher alpha amylase activity in the SSF extract of Aspergillus ochraceus (MTCC 1877) in comparison to Trichoderma longibrachiatum (ITCC 7839). On the contrary, comparatively higher cellulase activity was observed in the SSF extract of Trichoderma longibrachiatum (ITCC 7839). The results showed the potential of Aspergillus ochraceus (MTCC 1877) as a source of the two enzymes. Variation in enzymes activity may be attributed to the experimental culture conditions and may be further optimized to enhance the enzymes yield.


2018 ◽  
Vol 6 (4) ◽  
pp. 327-331
Author(s):  
Dipesh Shahi ◽  
Rajiv Sapkota

The use of different dyes and pigments is increasing with the increase in industrialization leading to the high production of effluent. The effluent contaminated with dyes and dye-stuff has harmful effects on public health and the environment. Thus, the treatment of effluent is essential. Biological approaches are gaining much interest due to their cost-effective and eco-friendly nature over various physicochemical methods for the treatment of dye-contaminated wastewater. This study highlights on the biodegradation of congo red and malachite green by using leaf and root extracts of Parthenium hysterophorus. The extract and the dye were mixed in the ratio of 1:2 and incubated at 40ºC for 90 minutes. Decolorization assay was performed using UV visible spectrophotometer which indicated that decolorization was due to degradation of dyes into non-colored metabolites. The leaves extract exhibited higher decolorizing activity than roots extract. The maximum decolorization for leaves extract was 55.8% (congo red) and 51.6% (malachite green). Furthermore, phytotoxicity test was carried out to determine the effect of dyes and their degradation metabolites on seed germination and seedling growth of chickpea (Cicer arietinum L). The germination percentage and seedling growth were more in degradation metabolites than untreated dyes, indicating less toxic nature of degradation metabolites. Hence, it can be inferred that P. hysterophorus extracts can be used to treat dye wastewater and treated wastewater can be used for irrigation. Int. J. Appl. Sci. Biotechnol. Vol 6(4): 327-331


2021 ◽  
Author(s):  
Aruã Da Silva Leite ◽  
Melina Macouin ◽  
Sonia Rousse ◽  
Jean-François Leon ◽  
Loïc Drigo ◽  
...  

<p>The finer fraction of the particulate matter (PM) is the most harmful health wise, as it has more capacity to reach deeper parts of the respiratory system. Among other constituents, PM also contains iron oxides, allowing for the use of magnetic methods in its investigation as proxies for the whole of PM. Those methods present advantages in comparison to traditional ones, being quick, cost effective and sensible to investigate iron oxides among PM. </p><p>To better understand the risks related to PM exposition in the domestic context, the assessment of magnetic parameters may be used in outdoor and indoor environments, giving us information on the concentration of iron oxides (and consequently, PM) and its dispersion from one environment to the other. </p><p>We developed a citizen sciences experiment in the city of Toulouse, France. Tree barks were used as bio-collectors. Garlands composed of tree bark pieces were distributed to the population in May-2019, and placed in both indoors and outdoors of flats and homes to capture PM. They were retrieved after one year. Measurement of magnetic susceptibility, ARM, SIRM, S -ratio and estimation of superparamagnetic concentration were performed. A total of 86 bio-collectors kits were successfully analyzed. The preliminary results indicate a higher concentration of iron oxides outdoors, with a mean difference between outdoor and indoor measurements of 6.58x10<sup>-9</sup>m<sup>3</sup>/kg and 1.38x10<sup>-5</sup>Am<sup>2</sup>/kg in susceptibility and SIRM respectively. The concentration of the SP fraction also follows this trend of higher outdoor values. The magnetic mineralogy is mostly dominated by low coercivity magnetite-like carriers.</p><div> <div> <div> </div> </div> <div> <div> </div> </div> </div>


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Avtar Singh ◽  
Amanjot Kaur ◽  
Anita Dua ◽  
Ritu Mahajan

Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.


2021 ◽  
Author(s):  
Oladipo Olaniyi

Abstract The goal of this present investigation was to mutagenize Bacillus subtilis with Ethyl Methyl Sulphonate (EMS), screen the mutants for cellulase production and evaluate the influence of different glucose concentrations on their cellulase production potentials. The wild type B. subtilis was treated with 20, 40, 60 and 80 µl of EMS and the mutants generated were screened for cellulase production in minimal salt medium containing carboxylmethylcellulose (CMC) as the carbon source. Quantitatively, cellulase activity and protein contents were determined by dinitrosalicylic acid and Lowry methods respectively. Seven mutants were developed from each of the EMS concentration bringing the total to twenty-eight from all the concentrations. Approximately 14 and 57% of the mutants developed from 40 and 60µl of EMS had higher cellulase activities than the wild type, while none of the mutants developed from 20 and 80 µl of EMS had better activities than the wild type. The supplementation of 0.2, 0.5, 1.0 and 1.5% glucose in enzyme production medium caused approximately 100, 14, 29 and 14% cellulase repression respectively in the mutants developed from 60µl EMS. Mutants MSSS02 and MSSS05 were considered as catabolite insensitive mutants because their cellulase production were enhanced in comparison to wild type.


2020 ◽  
Vol 69 (2) ◽  
pp. 193-203
Author(s):  
QANDEEL LARAIB ◽  
MARYAM SHAFIQUE ◽  
NUSRAT JABEEN ◽  
SEHAR AFSHAN NAZ ◽  
HAFIZ RUB NAWAZ ◽  
...  

Microbial populations within the rhizosphere have been considered as prosperous repositories with respect to bioremediation aptitude. Among various environmental contaminants, effluent from textile industries holds a huge amount of noxious colored materials having high chemical oxygen demand concentrations causing ecological disturbances. The study was aimed to explore the promising mycobiome of rhizospheric soil for the degradation of azo dyes to develop an efficient system for the exclusion of toxic recalcitrants. An effluent sample from the textile industry and soil samples from the rhizospheric region of Musa acuminata and Azadirachta indica were screened for indigenous fungi to decolorize Congo red, a carcinogenic diazo dye, particularly known for its health hazards to the community. To develop a bio-treatment process, Aspergillus terreus QMS-1 was immobilized on pieces of Luffa cylindrica and exploited in stirred tank bioreactor under aerobic and optimized environment. Quantitative estimation of Congo red decolorization was carried out using UV-Visible spectrophotometer. The effects of fungal immobilization and biosorption on the native structure of Luffa cylindrica were evaluated using a scanning electron microscope. A. terreus QMS-1 can remove (92%) of the dye at 100 ppm within 24 h in the presence of 1% glucose and 1% ammonium sulphate at pH 5.0. The operation of the bioreactor in a continuous flow for 12 h with 100 ppm of Congo red dye in simulated textile effluent resulted in 97% decolorization. The stirred tank bioreactor was found to be a dynamic, well maintained, no sludge producing approach for the treatment of textile effluents by A. terreus QMS-1 of the significant potential for decolorization of Congo red.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Ega Soujanya Lakshmi ◽  
Manda Rama Narasinga Rao ◽  
Muddada Sudhamani

ABSTRACT Thirty seven different colonies were isolated from decomposing logs of textile industries. From among these, a thermotolerant, grampositive, filamentous soil bacteria Streptomyces durhamensis vs15 was selected and screened for cellulase production. The strain showed clear zone formation on CMC agar plate after Gram’s iodine staining.  Streptomyces durhamensis vs15 was further confirmed for cellulase production by estimating the reducing sugars through dinitrosalicylic acid (DNS) method. The activity was enhanced by sequential mutagenesis using three mutagens of ultraviolet irradiation (UV), N methyl-N’-nitro-N-nitrosoguanidine (NTG) and Ethyl methane sulphonate (EMS). After mutagenesis, the cellulase activity of GC23 (mutant) was improved to 1.86 fold compared to the wild strain (vs15). Optimal conditions for the production of cellulase by the GC 23 strain were evaluated using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Effect of pH, temperature, duration of incubation, , and substrate concentration on cellulase production were evaluated. Optimal conditions for the production of cellulase enzyme using Carboxy Methyl Cellulase as a substrate are 55 oC of temperature, pH of 5.0 and incubation for 40 h. The cellulase activity of the mutant Streptomyces durhamensis GC23 was further optimised to 2 fold of the activity of the wild type by RSM and ANN.  


2012 ◽  
Vol 169 (2) ◽  
pp. 418-430 ◽  
Author(s):  
Sharrel Rebello ◽  
Aju K. Asok ◽  
Sunil V. Joseph ◽  
Biljo V. Joseph ◽  
Leny Jose ◽  
...  

2011 ◽  
Vol 183-185 ◽  
pp. 994-998
Author(s):  
Shuo Dong ◽  
Nai Yu Chi ◽  
Qing Fang Zhang

The design of an optimum and cost-efficient medium for production of cold-active cellulase by Penicillium cordubense D28 was attempted by using response surface methodology (RSM). Based on the Plackett–Burman design, corn meal, (NH4)2SO4 and branc were selected as the most critical nutrient. Subsequently, they were investigated by the Box-Behnken design. Results showed that the maximum cold-active cellulase activity of 110.4U/mL was predicted when the concentration of corn meal, (NH4)2SO4 and branc were 21.97 g/L, 2.39 g/L and 14.99 g/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective corn meal, (NH4)2SO4 and branc concentration of 22 g/L , 2.4 g/L and 15 g/L , the initial pH of 6.0 and experimental temperature of 20 ± 1°C. Without further pH adjustment, the maximum cold-active cellulase activity of 109.8 U/mL was obtained based on the optimized medium with further verified the practicability of this optimum strategy.


Sign in / Sign up

Export Citation Format

Share Document